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INTRODUCTION: Over billions of years, orga-
nisms and their enzymes have been evolving
and adapting in response to selection pres-
sures from their environments. In particular,
livable temperature varies from about −15° to
121°C and exerts an evolutionary force that
manifests in the adaptation of enzyme stabil-
ities and activities: At increased temperatures,
enzymes evolve greater stability to combat
thermal denaturation and maintain a folded
structure, whereas at decreased temperatures,
nearly all chemical reactions necessary for life
slow, placing evolutionary pressure on cold-
adapted enzymes to be more active. An under-
standing of the molecular and evolutionary
mechanisms that underlie enzyme tempera-

ture adaptation are integral to our understand-
ing of how living systems have evolved and can
reveal hidden aspects of how enzyme activity
and stability is achieved, helping to define rules
that can be used for enzyme design.

RATIONALE: We have dissected the molecular
and evolutionary mechanisms underlying en-
zyme temperature adaptation both deeply and
broadly. We first turned to the bacterial en-
zyme ketosteroid isomerase (KSI), combining
mechanistic and structural studies with se-
quence and phylogenetic analyses to reveal
the mechanisms underlying its activity and
stability adaptation at the atomic and residue
levels. Building on these results, we performed

sequence and phylogenetic analyses, examin-
ing enzyme temperature adaptation in 2194
bacterial enzyme families to identify residue
changes associated with growth tempera-
ture differences (referred to as “temperature-
associated residues”) and analyzing their
physical properties and interactions.

RESULTS: We show that temperature adapta-
tion in KSI arises primarily from a single active-
site residue change with minimal epistasis. In
cold-adapted KSI orthologs, a stronger active-
site hydrogen-bond donor, protonated Asp103

(D103), improves activity. Conversely, warm-
adapted KSI orthologs are stabilized by Ser103

(S103), which decreases activity but increases
stability by removing the protonation-coupled
folding of D103. Phylogenetic analyses showed
that this active-site amino acid change (D103/
S103) has occurred in diverse KSI sequence
backgrounds fromdiverse bacteria, further sup-
porting limited epistasis and suggesting pa-
rallel adaptation.
Our broad sequence and phylogenetic analy-

ses revealed 158,184 statistically significant
temperature-associated residues from 1005 en-
zyme families. Most of these residues are found
in sequences from phylogenetically diverse
bacteria, suggesting widespread temperature
adaptation and parallel evolution. Bymapping
temperature-associated residues to structure,
we found that these residues typically change
with temperature on their own or with one
other residue in physical contact, suggesting
limited epistasis at these sites. Analyses of
these temperature-associated residues reveal
molecular and physical trends that test, hone,
and revise nearly all prior mechanisms for en-
zyme temperature adaptation and identify net-
works of residues that appear to coadapt to
temperature, perhaps cooperatively influenc-
ing catalysis stability, and/or allostery.

CONCLUSION: Our results broadly and deeply
addressed enzyme temperature adaptation, re-
vealing molecular mechanisms underlying the
adaptation of KSI and identifying 158,184
temperature-associated residues; these data
reveal physical trends andprovide extensive data
that can be further mined to understand mo-
lecular evolution and applied to enzyme design.
These data further suggest that enzyme adapta-
tion has repeatedly followed evolutionary paths
of low epistasis, advancing our understanding of
the evolutionary mechanisms that underly ad-
aptation of nature’s repertoire of enzymes.▪
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Analyses of enzyme temperature adaptation. Enzymes adapt to low or high temperatures by modifying their
activities or stabilities, respectively (top left). Temperature adaptation in KSI arises primarily from one active-site
change (top right). Sequence analyses identify residues whose identity is associated with bacterial growth
temperature (TGrowth) (bottom left). The phylogenetic distribution of these residues, their physical trends, and
structural interactions were then analyzed (bottom right).
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The mechanisms that underly the adaptation of enzyme activities and stabilities to temperature are
fundamental to our understanding of molecular evolution and how enzymes work. Here, we investigate
the molecular and evolutionary mechanisms of enzyme temperature adaption, combining deep
mechanistic studies with comprehensive sequence analyses of thousands of enzymes. We show that
temperature adaptation in ketosteroid isomerase (KSI) arises primarily from one residue change with
limited, local epistasis, and we establish the underlying physical mechanisms. This residue change
occurs in diverse KSI backgrounds, suggesting parallel adaptation to temperature. We identify residues
associated with organismal growth temperature across 1005 diverse bacterial enzyme families,
suggesting widespread parallel adaptation to temperature. We assess the residue properties, molecular
interactions, and interaction networks that appear to underly temperature adaptation.

O
ver billions of years, organisms and
their enzymes have diversified and
evolved in response to selection pres-
sures and opportunities presented by
their environments. Themolecularmech-

anisms that underlie these adaptations and
how these mechanisms shape the adaptive
landscapes of enzymes are integral to how
living systems have evolved. Conversely, evo-
lutionary adaptations can reveal hidden as-
pects of enzyme function and contribute to
our understanding of how enzymes work.
We address these questions through the

lens of enzyme temperature adaptation. For
most organisms, intracellular temperature
matches their environment, requiring organ-
isms and their enzymes to adapt over a range
of about −15° to 121°C (1, 2). Consequently,
environmental temperature exerts a common
and pervasive evolutionary force on enzymes,
whichmanifests as temperatures ofmaximum
activity that correlate strongly with the opti-
mal growth temperatures (TGrowth) of their
respective organisms (Fig. 1A and table S1) (3).
Changes in temperature directly influence

the activities and stabilities of enzymes, pre-
senting specific molecular challenges that must
be overcome during adaptation. At increased

temperatures, enzymes evolve greater stability
to combat thermal denaturation andmaintain
a folded structure (4). At decreased tempera-
tures, the rates of nearly all the chemical re-
actions necessary for life decrease, placing
evolutionary pressure on cold-adapted en-
zymes to be more active. Consistent with this
model, cold-adapted enzymes are often re-
ported to be more active than their warm-
adapted orthologs at a common temperature
(5–7).
Enzyme temperature adaptation requires

changes to the physical interactions responsible
for activity and stability. For example, substitu-
tion of Thr26 (T26) in a low TGrowth ortholog
of adenylate kinase (ADK) for the ortholo-
gous residue Ile26 (I26) found in many high
TGrowth ADKs increased itsmelting temperature
(Tm) by 8.1°C, apparently as a result of increased
hydrophobic interactions with surrounding
residues (8). Many molecular mechanisms
for increasing enzyme stability have been de-
scribed in the literature; however, the physical
mechanisms underlying the reported increased
activity of enzymes adapted to lower temper-
atures are less clear, with proposals to account
for this behavior centered on enzymatic pro-
perties that correlatewith organismTGrowth, such
as enthalpy of activation (DH‡), heat capacity of
activation (DC‡

p), or flexibility (4, 7,9–11). Although
these changes in enzyme behavior appear to be
coincident with cold adaptation, their relation-
ship to enhanced catalysis may be indirect or
even coincidental, and the underlying physical
processes remain elusive. Furthermore, differ-
ent trends have been observed with different
enzymes, complicating interpretation (supple-
mentary text S1) (9, 11, 12).
Themolecularmechanisms that are temper-

ature adaptive in one enzyme sequence back-

ground may not be in another, depending on
the extent that these mechanisms are influ-
enced by specific physical interactions that are
local or distributed. This context dependence
is referred to as epistasis and is fundamental
to our understanding of enzyme sequence-
function landscapes (13). Although molecular
epistasis has been widely discussed, the mag-
nitude of its effects, the extent that epistasis is
local versus distal, and the molecular mech-
anisms that underly epistasis remain to be
broadly and deeply explored. Indeed, there is
no consensus on the degree to which epistasis
influences evolution, with some saying epista-
sis is the “primary factor” in protein evolution
and others suggesting that its effects are lim-
ited (13–15). Furthermore, the extent of epis-
tasis and the magnitude of epistatic effects
may differ between sites depending on their
interconnectivity and differ between enzymes
depending on their functional and structural
architecture, and the influence of epistasis on
evolution will differ depending on the selec-
tive pressure(s) placed on the enzyme, orga-
nism, and population.
To dissect the molecular mechanisms of

temperature adaptation and explore the ex-
tent to which epistasis has influenced the
adaptive landscape of enzymes, we examined
enzyme temperature adaptation both deeply
and broadly. We performed deep mechanistic
studies of the bacterial enzyme ketosteroid
isomerase (KSI), revealing molecular mech-
anisms underlying its temperature adapta-
tion. Notably, its stability and activity changes
largely result from a single amino acid change,
with epistasis limited to immediately sur-
rounding residues. Phylogenetic analyses show
that this amino acid change has occurred in
diverse KSI backgrounds across bacteria, fur-
ther supporting limited epistasis and sug-
gesting parallel adaptation to temperature.
To test the generality of this result and to
identifymolecularmechanisms of temperature
adaptation in other enzymes, we carried out
sequence and phylogenetic analyses for an ad-
ditional 2194 bacterial enzyme families, identify-
ing temperature-associated residues, trends
in temperature-associated residue properties
and interactions, and molecular mechanisms
that appear to underlie their temperature ad-
aptation for several case studies. We provide
evidence that many temperature-associated
residues are enriched in diverse bacteria with
similar growth temperatures, suggesting pa-
rallel adaptation to temperature.

Results and discussion
Temperature adaptation of the activities and
stabilities of KSI

We first turned to the enzyme KSI because
the rich mechanistic and structural data from
prior studies of this enzyme allowed for in-
depth dissection of its temperature adaptation
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(16–18). In a subset of bacteria, KSI is involved
in a metabolic pathway that allows steroids to
be used as carbon and energy sources (19). KSI
catalyzes the isomerization of double bonds in
steroid substrates that use a general base and
an oxyanion hole, most often composed of a
tyrosine and a protonated aspartic acid that do-
nate hydrogen bonds to stabilize the increased

negative charge on the transition states and
intermediate (Fig. 1B). A mesophilic variant
of KSI from Pseudomonas putida [mesoKSI,
TGrowth = 30°C (20)] has been extensively
studied (16–18). For comparison, we searched
for thermophilic mesoKSI orthologs using
BLAST and identified a single candidate
(thermoKSI, 33% identical to mesoKSI) from

Mycobacterium hassiacum, which can grow at
65°C (Fig. 1C) (21, 22).
We began by determining the activities, rep-

resented by the Michaelis-Menten parameters
kcat and kcat/KM, of mesoKSI and thermoKSI.
At a common temperature, 25°C, the mesoKSI-
catalyzed reactionwas faster than the thermoKSI-
catalyzed reaction by 10-fold in kcat (reaction rate
with saturating substrate) and 50-fold in kcat/KM

(reaction rate with subsaturating substrate), pre-
sumably reflecting the lower TGrowth of the
mesophile and increased evolutionary pressure
onmesoKSI activity (Fig. 1D and table S2) (7, 9–11).
This observation and the similar activities of
mesoKSI and thermoKSI at their respective
TGrowth values are consistent with reports for
several other thermally adapted enzymes
(Fig. 1D) (7, 9–11). Moreover, thermoKSI
was 6.8 kcal/mol more stable than mesoKSI,
consistent with the higher TGrowth of thermoKSI
and an increased evolutionary pressure for
higher stability (Fig. 1E and table S3) (7, 9–11).
In contrast to prior proposals for enzyme tem-
perature adaptation, mesoKSI and thermoKSI
activities had indistinguishable DH‡ values and
near-zero values of DC‡

p (fig. S1 and supplemen-
tary text S1).

Differences in active-site residues between
temperature-adapted KSIs

To identify themolecularmechanisms respon-
sible for the activity and stability differences
between mesoKSI and thermoKSI, we first
solved the 1.25-Å resolution x-ray crystal struc-
ture of thermoKSI with a bound transition
state analog, 3,4-dinitrophenolate (DNP)
(Fig. 2A, fig. S2, and tables S4 and S5). The
structure of thermoKSI•DNP was highly sim-
ilar to mesoKSI•DNP [root mean square de-
viation (RMSD) = 0.76 Å for backbone atoms],
despite sharing just 33% sequence identity
(Fig. 2A). Intriguingly, we observed a change
in a key active-site residue: Where mesoKSI
has an aspartic acid hydrogen-bond donor at
position 103, thermoKSI has a serine, S103,
which binds a water molecule that acts as the
oxyanion hole hydrogen-bond donor (Figs. 1C
and 2B; mesoKSI numbering is used through-
out for simplicity). Furthermore, the residues
contacting position 103 inmesoKSI, Phe86 (F86)
and Val101 (V101), were substituted by Trp86

(W86) and I101 in thermoKSI, and there were
additional differences in the residues surround-
ing positions 86 and 101 (Fig. 2B and fig. S3).

Activity and stability adaptation in KSI arise
predominantly from a single active-site change

Asp103 (D103) is expected to be a stronger
hydrogen-bond donor than the S103-bound
water owing to the increased polarity of a
carboxylic acid relative to a hydroxyl donor
(Fig. 2C and supplementary text S2) (18). This
difference in hydrogen-bond donor strength
could be responsible for the activity difference
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Fig. 1. Enzyme temperature adaptation through changes in activity and stability. (A) The temperature
of the maximum enzymatic activity (TMax) correlates with the median optimal growth temperature of its
respective organism (TGrowth). Enzymes examined span all major enzyme classes and diverse cellular
functions in both prokaryotes and eukaryotes (table S1). R2, coefficient of determination. (B) The mechanism
of isomerization of the steroid 5(10)-estren-3,17-dione [5(10)EST] by KSI, with residues and numbering from
the P. putida ortholog (16). E, enzyme; S, substrate; I, intermediate; P, product. (C) Alignment of KSI
sequences from P. putida (mesoKSI) and M. hassiacum (thermoKSI) (33% identical). Identical residues are
highlighted in gray, and similar residues are highlighted in blue; the oxyanion hole hydrogen-bond donors
Y16 and D103 (mesoKSI) or S103 (thermoKSI) are highlighted in red. MesoKSI numbering is used throughout
for simplicity. (D) Activities (kcat and kcat/KM) of mesoKSI (black) and thermoKSI (red) with 5(10)EST at a
common temperature (25°C) and at their respective growth temperatures (30° and 65°C). See table S2 for
compiled mesoKSI and thermoKSI activities. E0, initial enzyme concentration. (E) Representative urea denaturation
curves for mesoKSI (black) and thermoKSI (red) monitored by changes in internal tryptophan fluorescence (top)

and stabilities extrapolated to 0 M urea (DGH2O
U ) (bottom). See table S3 for compiled mesoKSI and thermoKSI

stabilities. Error bars in (D) and (E) represent ±1 SD from two to seven independent experiments. Single-letter
abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile;
K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
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between mesoKSI and thermoKSI. Consistent
with this model, the hydrogen bond between
the S103-bound water and DNP is 0.15 Å
longer than the D103-DNP hydrogen bond, a
lengthening that predicts the weakening of
this hydrogen bond and the observed 10-fold
difference in activity between mesoKSI and
thermoKSI based on systematic studies of
KSI active-site hydrogen-bond energetics (Fig.
2B, fig. S4, and supplementary text S2) (18).
Next, the hydrogen bonds donated by D103

versus S103-bound water were further inves-
tigated using molecular mechanics (MM) and
quantum mechanics and molecular mechan-
ics (QM/MM) calculations (see Materials and
methods; figs. S5 and S6; and supplementary
text S3). Consistent with D103 as a stronger
hydrogen-bond donor, computed D103-DNP
hydrogen-bond lengths were, on average,
0.11 Å shorter than the hydrogen bond be-
tween the S103-bound water and DNP in both
mesoKSI and thermoKSI backgrounds. Final-

ly, theAsp103→Ser (D103S)mutation inmesoKSI
decreased kcat and kcat/KM, by 36- and 50-fold,
respectively, and, more persuasively, the S103D
mutation in thermoKSI increased activity by
two- and sixfold in kcat and kcat/KM, respec-
tively (Fig. 2D).
To test if the remaining differences between

mesoKSI and thermoKSI activities resulted
from local epistasis, we made substitutions at
two positions contacting position 103, posi-
tions 86 and 101. The I101V mutation in com-
bination with S103D increased the activity
of thermoKSI by 10-fold in kcat (Fig. 2D).
Adding in the W86F mutation increased kcat/
KM by an additional fivefold, bringing the ac-
tivity of thermoKSI to wild-type (WT) mesoKSI
levels (Fig. 2D). Without the S103D mutation,
the W86F/I101V mutations had no effect on
thermoKSI kcat and were deleterious to kcat/KM,
indicating epistasis that presumably arises from
the physical interactions between D103 and
V101 and the interactions betweenW/F86 and
the substrate (Fig. 2D and figs. S3 and S7). Con-
versely, mesoKSI D103S activity achieves WT
thermoKSI levels by introduction of a trypto-
phan at position 86 along with S103 (mesoKSI
F86W/D103S) (Fig. 2, B and D). These results
are consistent with MM and QM/MM simu-
lations that show that the addition of the F86W
mutation stabilizes the native, active conforma-
tion of S103, limiting alternative rotamers of
S103 that destabilize the native oxyanion hole
configuration (supplementary text S3 and
fig. S6). Thus, substituting the hydrogen-bond
donor at position 103, enhanced by one or
two neighboring mutations, quantitatively
interconverts mesoKSI and thermoKSI activ-
ities, despite the overall sequence identity of
only 33% for these enzymes.
These results suggest that the adaptation of

KSI activity occurs through primarily one ami-
no acid change, withmodest local epistasis. To
further test the model of limited epistatic ef-
fects on D/S103 mutations, we carried out
analogous activity measurements for four
additional KSI orthologs and their mutants
(fig. S8). In all backgrounds, the D103 variants
were faster than the corresponding S103 var-
iants, regardless of whether the WT sequence
originally contained D103 or S103 and despite
sequence identities ranging from 28 to 58%
(fig. S8).
We further predicted that the change from

D103 to S103 would account for the observed
stability difference between mesoKSI and
thermoKSI. The pKa of D103 (where Ka is
the acid dissociation constant) is considerably
perturbed (pKD103

a ≥ 9) from that of a solvent-
exposed aspartate side chain [pKAsp

a ≅ 3:7
(23)], presumably the result of the surrounding
hydrophobic environment and its proximity
to the anionic D40 general base (Fig. 1B and
fig. S3) (16). Thus, for mesoKSI to fold at pH 7,
D103 must be protonated, an additional,
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Fig. 2. Interconversion of D103 and S103, enhanced by one to three additional mutations to
neighboring residues, accounts for differences in activity and stability between mesoKSI and thermoKSI.
(A) The x-ray crystal structure (1.25 Å) of thermoKSI (red, PDB ID 6P44) bound to the transition state
analog, DNP, aligned globally to the structure of mesoKSI bound to DNP (tan, PDB ID 6C17, RMSD = 0.76 Å
for backbone atoms). (B) The active-site residues F86, V88, V101, and D103 in mesoKSI are replaced by
W86, L88, I101, and S103 in thermoKSI, accompanied by the S103-bound water molecule. Dotted lines
indicate hydrogen bonds. (C) D103 is expected to enhance activity relative to the S103-bound water owing to
a higher partial positive charge density on the hydrogen-bond donor that interacts with the negatively
charged transition states (supplementary text S2). (D) Reciprocal mutation of residues at positions 86, 101,
and D103 interconvert the catalytic parameters, kcat and kcat/KM, of mesoKSI and thermoKSI. (E) Coupled
unfolding and D103 deprotonation in mesoKSI is predicted to destabilize its folded state, relative to
thermoKSI, and result in a pH dependence in stability. (F) Reciprocal mutation at positions 86, 88, 101, and
D103 interconvert the stabilities of mesoKSI and thermoKSI. (G) D103-containing variants of mesoKSI and
thermoKSI are more stable at pH 5 than at pH 7, but S103-containing variants are not. Error bars in (D),
(F), and (G) represent ±1 SD from two to seven independent experiments.
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unfavorable step at neutral pH that would
destabilize the enzyme (Fig. 2E, fig. S9, and
supplementary text S4). This extra protona-
tion step is absent with S103 so that, all else
being equal, S103-containing KSIs would be
more stable than D103-containing variants
at pH 7, whereas S103- and D103-containing
KSIs would have similar stabilities at low
pH where the protonation of the D103 side
chain is favored (Fig. 2E). Both of these ther-
modynamic predictions are met. First, S103-
containing KSI variants (mesoKSI D103S and
thermoKSI WT) were more stable than their
corresponding D103-containing variants
(mesoKSIWTand thermoKSIS103D; Fig. 2F). Sec-
ond, D103-containingmesoKSI and thermoKSI
variants weremore stable at pH 5 than at pH 7,
whereas the S103-containing variantswere not
(Fig. 2G). This result is the first evidence
supporting the suggestion, made more than
two decades ago by Shoichet and Matthews,
that the removal of residues with perturbed
pKa values could be an evolutionary strategy to
increase the stability of thermophilic enzymes in
cases where the catalytic cost is not too high (24).
As we did for catalysis, we explored epistatic

effects on stability by swapping residues at
positions surrounding position 103. Specifi-
cally, combined substitution of thermoKSI
residues at positions 86, 88, and 101 increased
mesoKSI D103S stability by an additional
3.4 kcal/mol but had no stability effects in
the mesoKSI D103 background (Fig. 2F).
Taken together, these changes quantitatively
accounted for the difference in mesoKSI and
thermoKSI stability (Fig. 2F). Thus, despite
33% overall sequence identity, epistatic effects
on stability were highly localized, because just
three local substitutions, plus position 103,
were sufficient to interconvert stabilities.

Favorable mutational pathways between
temperature-adapted KSIs

Epistasis between residues can restrict the
molecular outcomes and mutational path-
ways of proteins (25). We predicted that the
probability of KSI temperature adaptation
through substitutions at position 103 and
surrounding residues would be greater than
other potential solutions that require more
amino acid changes, provided that there is a
pathway between temperature-adapted states
without highly unfit intermediates. To inves-
tigate the mutational pathways for KSI tem-
perature adaptation, we performed all possible
combinations of residue swaps at positions 86,
101, and 103 for activity and at positions 86, 88,
101, and 103 for stability in both mesoKSI and
thermoKSI backgrounds. For both activity
or stability, we observed mutational paths
in mesoKSI and thermoKSI backgrounds
without unfit intermediates, suggesting avail-
able pathways to temperature adaptation (figs.
S10 and S11).

We additionally considered changes at the
nucleotide level, because twonucleotide changes
are needed to interconvert F/W and D/S co-
dons in bacteria: F86Wproceeds throughLeu86

(L86) or Cys86 (C86) intermediates and D103S
proceeds through Ala103 (A103), Gly103 (G103),
Asn103 (N103), or Tyr103 (Y103) intermediates
(figs. S12 and S13). Of these additional amino
acid intermediates, Y103 and C86 were high-
ly deleterious, decreasing stability by 3.9 to
11.5 kcal/mol (fig. S13). As predicted based
on these large deleterious effects, sequences
with Y103 or C86 were not observed in the
1140 KSI genomic and metagenomic sequen-
ces, whereas the remaining potential codon
intermediates were observed, consistent with
natural variants avoiding large decreases in stab-
ility (table S6). Intriguingly, N103, a hydrogen-
bond donor similar to S103-H2O, is disfavored
in natural KSI variants, perhaps because N103
is less active than D103 and less stable than
S103 (figs. S12 to S16); other factors such as
environmental nitrogen limitation and/or Asn
deamidation could also play a role (26, 27).

An interplay between selective pressures in
temperature adaptation of protonated Asp
and Glu residues

In substituting protonated D103 for S103,
KSIs sacrifice a 10-fold advantage in kcat
for a 6.8 kcal/mol increase in stability. Basic
thermodynamic principles predict that pro-
tonated Asp and Glu residues will be sim-
ilarly destabilizing across different enzymes,
whereas their effect on activity will depend
on their catalytic role. Thus, we expect that
protonated Asp and Glu (Asp/Glu-OH) resi-
dues would be substituted by other, more
stabilizing residues in high-TGrowth orthologs,
contingent on their importance for activity.
This trend emerges for the three enzyme fam-
ilies with Asp/Glu-OH residues identified in
the literature with both stability and activity
data. The Glu-OH in glycosidases, a general
acid directly involved in catalysis, gives large
rate decreases whenmutated and is conserved
at all values of TGrowth (fig. S14). An Asp-OH in
the active site of thioredoxin has an activity
effect of 10- to 100-fold and is also conserved
across TGrowth (fig. S14). By contrast, the Glu-
OH in triosephosphate isomerase is located far
from the active site at the dimer interface, has
no catalytic effect whenmutated to Gln, and is
not found in high-TGrowth organisms (above
40°C; fig. S14).
Although we observed an activity-stability

trade-off in KSI and such trade-offs are often
proposed to be widespread in enzyme tem-
perature adaptation, there are many com-
pelling examples of changes that enhance
stability without resulting in deleterious func-
tional effects (9, 10, 28). Our observations
for temperature adaptation involving Asp/
Glu-OH residues demonstrate the basic inter-

play between competing selection pressures
placed on enzymes: Substitution of Asp/Glu-
OH in temperature adaptation occurs when the
catalytic sacrifice is not too large.
Given the limited direct evidence for Asp/

Glu-OH residues in the literature, we searched
the Protein Data Bank (PDB) for Asp or Glu
residues predicted to be protonated based on
their local environment (see Materials and
methods). Of the 67 putative Asp/Glu-OH resi-
dues identified, 14 decrease in abundance in
high-TGrowth orthologs (table S7). We predict
that these 14 Asp/Glu-OH residues will have
smaller functional roles than the remaining
53 Asp/Glu-OH residues. Other factors may
also be at play, including whether there are
traversable mutational pathways and the ex-
tent of epistasis in these systems, and excep-
tions to this trendmay help us understand the
molecular underpinnings of these additional
factors.

Sequence and phylogenetic analysis suggest
parallel adaptation to temperature in KSI

KSI temperature adaptation, in both activ-
ity and stability, can occur through primar-
ily one amino acid change, D103 versus S103,
with minimal, local epistasis and along muta-
tional paths without highly unfit intermedi-
ates between temperature-adapted states. Most
simply, our results predict that the presence of
D or S at position 103 will depend on the tem-
perature that the organism is adapted to, with
a preponderance of D103 in low-TGrowth orga-
nisms imparting higher activity, and a pre-
ponderance of S103 in high-TGrowth organisms
imparting greater stability for KSI. Consider-
ing 1140 KSIs from genomic andmetagenomic
sources, these data meet this prediction: The
fraction of KSI sequenceswith D103 decreased
with TGrowth, whereas the fraction of sequen-
ces with S103 increased with TGrowth, such that
D103 is favored below 40°C and S103 is fav-
ored above 50°C (Fig. 3). Analysis of the phylo-
genetic tree of KSI sequences shows that D103
and S103 occur in diverse KSI sequences and
diverse bacteria, suggesting that changes be-
tween these residues have occurred multiple
times during KSI evolution, as expected for
parallel temperature adaptation (i.e., common
residue acquisition or maintenance in diverse
bacteria with similar values of TGrowth) and in
line with the minimal epistasis observed ex-
perimentally (figs. S15 and S16).

Identifying tens of thousands of
temperature-associated residues in
thousands of enzyme families

To broadly explore enzyme temperature adap-
tation, we searched each position in thousands
of sequences from thousands of enzyme fam-
ilies to determine if the same residues at these
positions are enriched in orthologs from di-
verse bacteria with similar values of TGrowth.
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These systematic analyses have suggested
widespread parallel adaptation to tempera-
ture, allowed us to test and refine priormodels
for temperature adaptation, and allowed us to
construct a rich dataset for future mechanistic
dissection.
To identify residues that are enriched in

lineages with low and high TGrowth, we com-
puted associations between the presence of
each of the 20 amino acids and TGrowth at
each position in each of 2194 enzyme fam-
ilies across 5852 different bacterial species,
for a total of 1.7 × 107 positional comparisons
(Fig. 4, A to C). Notably, nearly half of these
enzyme families (46%; 1005 of the 2194) had
one or more positions where the presence of
a specific amino acid correlates with either
increasing or decreasing TGrowth, for a total of
158,184 statistically significant residue posi-
tions after correction for multiple hypothe-
sis testing (Fig. 4C and figs. S17 and S18). We
refer to these as temperature-associated resi-
dues. Temperature adaptation of the remain-
ing 1189 enzymes may be more diverse and
perhaps lineage-specific, which future analy-
ses at different evolutionary depths will help
elucidate.

Temperature-associated residues suggest
widespread parallel adaptation

We focused on bacterial enzymes, because
there are a myriad of sequences available
from diverse bacteria that have undergone
temperature adaptation independently to
achieve growth temperatures ranging from
4° to 80°C (fig. S19). This large dataset en-
abled us to distinguish residues that are en-
riched in diverse bacteria with similar values
of TGrowth, as expected for parallel adapta-
tion, from clade-specific changes that may
require a specific local sequence background

to be adaptive, or to low-probability solutions
to temperature adaptation.
To distinguish between these possibilities,

we mapped each temperature-associated re-
sidue onto the phylogenetic tree of bacterial
species and computed its phylogenetic signal
(DResidue), whichmeasures the degree towhich
a residue is clustered versus dispersed on a
phylogenetic tree; low values of DResidue cor-
respond to residues clustered within a narrow
clade, and high values of DResidue correspond
to residues distributed across many clades (Fig.
4D and figs. S20 and S21) (29). We observed
that most temperature-associated residues
(51%) had DResidue scores indicative of disper-
sal throughout the phylogenetic tree, rather
than extensive clustering within a particular
clade (Fig. 4, D and E). These data suggest pa-
rallel adaptation to temperature through the
acquisition and/ormaintenance of temperature-
associated residues along diverse bacterial
lineages with similar values of TGrowth (fig.
S22). As an example, Ile residues at position
452 of phosphate acetyltransferase are dis-
tributed across the bacterial tree and strongly
enriched in diverse high-TGrowth organisms,
with I452 present in all but one bacterial spe-
cies with TGrowth values above 56°C (Fig. 4, C
and F). Because this residue is located at the
enzyme’s dimer interface, I452 may stabilize
intersubunit association (Fig. 4C). The enrich-
ment and dispersal of most of our 158,184
temperature-associated residues further sug-
gests that these residues represent highly
probable adaptive mechanisms. This work
extends prior focused studies that observed
parallel mutations during the adaption of
several proteins (30–34) and a broad study
that observed parallel mutations in eukaryotic
proteins where the underlying selection pres-
sures were unknown (35).

Testing and refining models for temperature
adaptation through examination of 158,184
temperature-associated residues
Hundreds of published studies have examined
differences in bulk amino acid compositions
between mesophilic and thermophilic or-
ganisms, differences in sequences between
mesophilic and thermophilic proteins, and
differences in structural properties between
mesophilic and thermophilic proteins and
have suggested principles for temperature
adaptation (4). However, because these trends
were obtained from a limited number of or-
ganismal, sequence, and structural compari-
sons (typically 2 to 10) of differing phylogenetic
relatedness, they could represent evolutionary
noise, or clade or background-specific adapta-
tions that are not general. Indeed, many spe-
cific stabilizing residue changes identified from
comparative enzyme studies are not signifi-
cantly enriched in diverse thermophilic bac-
teria (table S8).
Our dataset allowed us to systematically in-

terrogate temperature adaptation at four levels
of sequence and structural complexity and
address nearly all previous models for temper-
ature adaptation. Specifically, we assessed (i)
preferences in the types of amino acids asso-
ciated with high or low TGrowth (Fig. 5A and
table S9), (ii) the identities and frequencies
of site-specific residue changes across TGrowth
(Fig. 5B and table S10), (iii) the identities
and frequencies of physically interacting
temperature-associated residue pairs (Fig. 5C
and table S11), and (iv) networks of temperature-
associated residues that change concomitantly
with TGrowth (Fig. 6). Through these analyses,
we have reconsidered, refined, and expanded
previous models and, in the process, revealed
new relationships, as outlined below and in
table S12. In this section we discuss two in-
sights that arise from analyses (i) to (iii) above;
network analyses (iv) are described in a later
section.
Several groups have postulated that thermo-

philic proteins frequently gain stability by in-
creasing the amount of branched-chain amino
acid residues (Ile, Leu, and Val) in their hydro-
phobic cores, thereby improving packing and
increasing the hydrophobic effect (4). Our data
support yet refine this model. We observed
that Ile is more often associated with high
TGrowth than low TGrowth, but Leu and Val are
not, suggesting that Ile is stabilizing in
diverse contexts, whereas the other branched
hydrophobic amino acids are not, or may be
stabilizing but in more limited instances or
specific contexts (Fig. 5A). Further under-
scoring the distinction between the branched-
chain hydrophobic residues, the two most
frequent site-specific residue changes ob-
served throughout enzyme families are be-
tween branched-chain residues: from Leu
and Val in low-TGrowth orthologs to Ile in
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Fig. 3. D103 and S103 are favored in
diverse low- and high-TGrowth
sequences, respectively. Relative
fraction of D103 versus S103 in KSI
sequences from bacterial genomes (left)
and combined genomic and metage-
nomic sources (right) at different values
of TGrowth (*p < 0.01 and **p < 0.001
by chi-square test). For metagenomic
sequences, where the species is
unknown, we used environmental tem-
peratures as an estimate for TGrowth
(see Materials and methods). Intriguingly,
D103 appears less favored when TGrowth
< 20°C. Perhaps the relative stability
of KSI also decreases at low temper-
atures because of cold denaturation (99).
Alternatively, additional selection pressures may be present in the environments and organisms sampled
during these low-temperature metagenomic sequencing experiments, such as increased pH, decreasing the
preference for D103.

**n =1140n = 277
*
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Fig. 4. Identifying tens of thousands of temperature-associated residues in
thousands of enzyme families and assessing their distributions across the
bacterial tree of life. (A) Simplified workflow for identifying temperature-associated
residues (see Materials and methods). For each enzyme family, orthologous
sequences from up to 5852 bacteria, with TGrowth values ranging from 4° to 80°C, were
aligned (left). Then, for each position in each enzyme, logistic regressions were
computed, modeling the probability of observing a specific amino acid at that position
[p(AA)] across TGrowth (right). T. thermophilus, Thermus thermophilus. (B) Histogram
of p values for temperature association from logistic regression models. The
vertical dashed line corresponds to the p value cutoff for temperature association,
corrected for multiple hypothesis testing (p < 0.01/17,000,000 < 5.9 × 10−10).
(C) Observed temperature associations for residues at position 452 in phosphate
acetyltransferase (PAT), which is located at the dimer interface. (D) Simulated
residue distributions on the phylogenetic tree of bacterial species [red indicates

residue present (1); blue indicates residue absent (0)] and their corresponding
phylogenetic signals (DResidue) (29). Greater clustering of the residue of interest
(red) is associated with more negative values of DResidue (left), dispersal is
associated with values of DResidue > 0, and a random distribution corresponds
to DResidue = 1 (right) (29). See fig. S20 for additional simulations and their
corresponding values of DResidue. (E) DResidue versus p value for TGrowth association
for each temperature-associated residue identified herein. Vertical dashed lines
correspond to the DResidue values simulated in (D). We anticipated that
temperature-associated residues would be similarly dispersed across the
phylogenetic tree as TGrowth. Indeed, values of DResidue are centered around 0.02 ±
0.31, similar to the underlying phylogenetic signal for high TGrowth (DTGrowth>40°C =
−0.05; fig. S21). (F) Distributions for residues at position 452 in PAT across the
bacterial species tree. Each leaf (bacterial species) is colored by the residue
present at position 452 in the PAT ortholog from that organism.
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high-TGrowth orthologs (Fig. 5B). These changes
are two- and threefold more common than
reciprocal Val-to-Ile changes (p = 4.6 × 10−14)
and Leu-to-Ile changes (p = 7.4 × 10−32), re-
spectively (Fig. 5B and table S10). Notably,
we observed that nearly all pairwise physical
interactions that involve Ile show preferences
for association with high TGrowth and, particu-
larly, interactions involving two Ile residues
(Fig. 5C). A strong preference for Ile in high-
TGrowth orthologs was previously observed for
two enzymes: Comparisons betweenmesophilic
and thermophilic orthologs of glyceraldehyde-
3-phosphate dehydrogenase and glutamate
dehydrogenase showed 6 and 12 Val/Leu-to-

Ile changes, respectively (36, 37). Perhaps Ile
is favored over Val because its larger size
provides greater hydrophobicity and surface
area for packing and favored over Leu because
its less restricted side-chain rotamer prefer-
ences allow it to explore more conforma-
tions to fill packing voids in protein interiors
(36, 38, 39). Consistent with this model, Ile
residues associated with high TGrowth popu-
late dihedral angles rarely observed for Leu
residues (fig. S23).
A second common model postulates that

thermophilic proteins gain stability by increas-
ing the number of salt bridges and hydrogen-
bonding interactionswith charged residues. (4)

These and othermodels are based on apparent
increases in the charged residues Lys, Arg,
Asp, and Glu and observations of salt bridges
in thermophilic proteins (table S12) (4). As
above, our data support yet refine this model.
We observed frequent association of Lys and
Glu with high TGrowth but not Arg and Asp
(Fig. 5A). Highlighting the preference for
Lys over Arg, the third most common site-
specific change is from Arg to Lys in high-
TGrowth enzymes, a change that is threefold
more common than the reciprocal Lys-to-
Arg change (p = 3.5 × 10−19; Fig. 5B and
table S10). Similarly, site-specific changes
from Asp to Glu with increased TGrowth are
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Fig. 5. Examination of temperature-associated residues and their interac-
tions. (A) For each amino acid, the difference in frequency of association with
high versus low TGrowth is shown. An asterisk indicates that the difference in
association frequency with low TGrowth versus high TGrowth is statistically
significant by chi-square test (table S9). (B) The frequency of observed site-
specific changes in temperature-associated residues. Counts and p values for the
significance of the directionality of these changes are in table S10. A “+”
indicates that the frequency of a residue change (e.g., L→I) is significant relative

to the reciprocal residue change (e.g., I→L; table S10). (C) The difference in
frequency of association with high versus low TGrowth for all possible physically
interacting pairs of residues (made up of residues R1 and R2) that change
concomitantly with TGrowth. Residue pairs that are darker blue are more
frequently associated with low TGrowth, whereas residue pairs that are darker
red are more frequently associated with high TGrowth. An asterisk indicates that
the difference in association frequency for a residue pair with low TGrowth versus
high TGrowth is statistically significant (table S11).
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A

C

D

B

Fig. 6. Networks of temperature-associated residues and their involvement
in temperature adaptation. (A) The distribution of sizes of networks of
temperature-associated residues (n = 6612 networks). Counts for larger
networks (>12 residues) are shown in fig. S31. (B) Representative structural
snapshots for the hydrogen-bond network (PDB ID 1AKE) and zinc binding site
(PDB ID 1ZIP) in the lid domain (purple) of ADK (top). Bar plots of the fraction of
sequences with the noted residues [F(AA)] at positions 126 (H or C; orange),
129 (S or C; green), 146 (D or C; blue), and 149 (T or C; red) at increasing values of

TGrowth; and logistic regression models of the probability [p(AA)] of observing a
specific amino acid at positions 126, 129, 146, and 149 across TGrowth are shown at
the bottom. (C and D) Networks of temperature-associated residues (p < 10−50) in
fructose-bisphosphate aldolase (C) and glucose-6-phosphate isomerase (D) (see
also figs. S28 and S29). Active-site residues (green) assigned from the Mechanism
and Catalytic Site Atlas (43) are shown. Temperature-associated residues
involved in intersubunit networks (blue) and active site–to-surface networks
(orange) are shown in space-filling representation.
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threefold more common than reciprocal Glu-
to-Asp changes (p = 1.8 × 10−13; Fig. 5B and
table S10). Furthermore, physical interactions
between Lys-Glu show the strongest prefer-
ence for association with high TGrowth of any
pairwise interaction, whereas Arg-Asp inter-
actions are more often associated with low
TGrowth (Fig. 5C). Thus, adaptation to high
TGrowth apparently does not arise simply from
an increased number of salt bridges; rather,
particular features of the residues that con-
stitute the salt bridges are important. For
example, salt bridges containing Lys are less
conformationally restricted than those with
Arg, and the more flexible side chain of Glu,
relative to Asp, may allow more effective con-
formational exploration to find interaction
partners (38, 40). Relative to Arg, Lys exhibits
a smaller reduction in side-chain entropy upon
protein folding, making Lys more entropically
favored (41). Lys, which has the largest median
hydrophobic accessible surface area of any
residue, may allow for additional hydrophobic
packing (42). In addition, the multiple posi-
tioned hydrogen-bond acceptors needed to ful-
fill interactions with the Arg NH(1/2) groups
may render its favorable incorporation more
dependent on surrounding residues (40). This
greater dependency, in turn, would predict
greater epistasis and less general utilization
of Arg in adaptation to high TGrowth, as is
observed (Fig. 5C).

Frequent temperature association of positions
contacting catalytic residues

Catalytic residues directly participating in en-
zymatic reactions are known to be highly con-
served, and their mutagenesis is typically highly
deleterious. As expected, in the 360 enzymes
in our dataset with annotated catalytic re-
sidues, we did not observe temperature-
dependent changes at any of the 1347 catalytic
positions (43).
Changes in second-shell residues have been

suggested to be important in maximizing the
efficiency of primary catalytic residues, con-
sistent with changes observed in the matura-
tion of a catalytic antibody and the directed
evolution of a designed enzyme (44, 45). In-
deed, we observed that 69% of catalytic residues
(926/1347) have at least one temperature-
associated residue at a second-shell position.
Most simply, second-shell residues could

alter the electronic properties or help posi-
tion catalytic groups. Catalytic Zn2+ ions pro-
vided an opportunity to look for possible cases
of electronic tuning, because ligands can alter
the electronic properties of Zn2+ ions (46).
Seven enzyme families that use an active-site
Zn2+ to activate catalytic watermolecules and/
or stabilize charged transition states exhibit
TGrowth-dependent changes in their Zn2+ lig-
ands (fig. S24 and table S13). In each case, Cys
ligands replace other residues in high-TGrowth

orthologs (table S13). The strong interaction
betweenCys and Zn2+may helpmaintain Zn2+

binding at high temperature while reducing
the catalytic ability of Zn2+ by partially neu-
tralizing its charge (46). Consistent with this
model, Cys ligands are more common at struc-
tural relative to catalytic Zn2+ binding sites
(46, 47).
Although we cannot yet broadly assess the

effects of these second-shell changes on active-
site positioning, in cases where motions are
involved in the enzyme’s rate-limiting step, we
might observe changes in the residues involved
in these motions. For Escherichia coli dihydro-
folate reductase (DHFR), where changes in con-
formation of the Met20 loop (residues 9 to 24)
across the DHFR reaction cycle limit the rate of
catalysis (48), we observe that residues at 4 of the
16 positions in the Met20 loop are temperature-
associated (fig. S25). More generally, temperature-
associated residue changes may help identify
residues that influence functional conforma-
tional dynamics for in-depth study.

Networks of interactions associated with
temperature adaptation

In many proteins, groups of amino acids work
together to influence enzyme stability and
function (4, 47, 49, 50). We therefore sought
to identify networks of physically contiguous,
temperature-associated residues because these
may function together to stabilize the enzyme
or modulate its function. Specifically, we iden-
tified residues that co-occur in sequence,
change concomitantly with TGrowth, and con-
tact one another in x-ray crystal structures.
Our criteria were met by networks in 525 of
the 1005 enzyme families with temperature-
associated residues. Most networks involved
only two residues, consistent with the increased
evolutionary probability for strategies with a
smaller number of changes (Fig. 6A). Never-
theless, 422 enzyme families had networks
of three or more residues (Fig. 6A and fig.
S26). We anticipated that residues in these
larger networks could work cooperatively to
enhance stability or alter functionally impor-
tant conformational changes, because the rates
and equilibria of conformational changes are
likely sensitive to temperature. Belowwe pres-
ent examples from our dataset that are con-
sistent with these roles.
The introduction of metal-ion binding sites

in thermophilic enzymes has been widely dis-
cussed as a stabilization mechanism but is
based on a small number of anecdotal exam-
ples andmight be improbable because it would
typically require the introduction of four or
more residues to serve as ligands (4, 47, 51). To
test whether metal sites are a common mech-
anism for temperature adaptation, we searched
for bound divalent metal ions in x-ray crystal
structures of the 422 enzymes with networks
of at least three temperature-associated resi-

dues (Fig. 6A). We identified 10 cases where
multiple metal ligands were associated with
high TGrowth (table S14). In all 10 cases, the
sites contained Zn2+ and, in nearly all cases,
four Cys ligands, perhaps because of the high
stability of the sulfur-Zn2+ interaction (46).
As an example, ~80% of the most thermo-
philic orthologs of ADK contain a Zn2+ bind-
ing site in the enzyme’s lid domain, but only
~10% of the psychrophiles have a Zn2+ bind-
ing site (Fig. 6B). Prior experiments confirm
that replacing the hydrogen-bond network
found in many low-TGrowth ADKs with the
Zn2+ site stabilizes a mesophilic ADK with-
out altering its activity (52, 53). Additional ex-
amples are shown in the supplement (fig. S27).
Prior studies have proposed the strength-

ening of existing subunit interactions as a
stabilization mechanism for thermophilic pro-
teins (4). Of the 1005 enzymeswith temperature-
dependent residues, 548 weremultimeric, and
154of those (28%)hadnetworks of temperature-
associated residues that extend across subunit
interfaces. For example, low-TGrowth variants
of fructose-bisphosphate aldolase and glucose-
6-phosphate isomerase and have five primar-
ily hydrophobic intersubunit residues that are
replaced by several salt bridges and hydrogen
bonds in high-TGrowth variants (Fig. 6, C andD,
and figs. S28 and S29).
Long-range allosteric communication in pro-

teins is common, but the residues constituting
the underlying networks are difficult to iden-
tify and can be difficult to link to biological
function and evolutionary adaptation (49).
Allosteric communication occurs from an en-
zyme’s surface, where modifications are made
or ligands bind, to the active site; additionally,
the function of many enzymes involves inter-
subunit coordination (49).We therefore searched
for networks that extended from active sites to
surfaces or between active sites across subunit
interfaces (i.e., active site–to–active site net-
works). We found that 142 of the 360 enzymes
(39%) with annotated active-site residues had
active site–to-surface networks, and 43 of the
192multimeric enzymes (22%)with annotated
active-site residues had active site–to–active
site networks. Fructose-bisphosphate aldolase,
noted above, provides an example of active
site–to-surface networks (Fig. 6C and fig. S28),
and glucose-6-phosphate isomerase, also dis-
cussed above, provides an example of active
site–to–active site networks (Fig. 6D and
fig. S29).

Conclusions and implications

We have broadly and deeply addressed enzyme
temperature adaptation, revealing two molec-
ular mechanisms underlying the temperature
adaptation of KSI and identifying 158,184
temperature-associated residues and their
physical trends and interaction networks that
occur among 1005 enzyme families. These
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data can be further mined to deepen our
understanding of molecular evolution and to
aid in uncovering additional mechanisms and
principles that can be applied to enzyme en-
gineering. In addition, this dataset may help
identify and dissect allosteric networks, sites
of oligomerization, and sites of protein-protein
association. As an example of the latter, singu-
lar temperature-associated residue changes
observed at many surface residues with no
obvious functional role may represent posi-
tions of protein or other ligand association or
may have a role in preventing nonspecific
interactions or aggregation (fig. S30). Finally,
and of broadest biological importance, the
observation of widespread parallel adaptation
to temperature and minimal epistasis at
temperature-associated sites suggests that
enzyme adaptation repeatedly follows evo-
lutionary paths of low epistasis, advancing
our understanding of the evolutionary mech-
anisms that drive the adaptation of nature’s
repertoire of enzymes.

Materials and methods
Materials

All reagents were of the highest purity com-
mercially available (≥97%). Type I deionized
water (≥18.2megohm·cm) was generated using
an Aqua Solutions 2121BL system and used to
prepare all aqueous solutions. Crystallization
materials were purchased from Hampton Re-
search. Anymaterials not specified belowwere
purchased from Sigma-Aldrich (nowMillipore-
Sigma) or Fisher Scientific.

Collection of temperatures of optimal activity
for enzymes from the literature

The temperature of optimal activity (Topt) values
in Fig. 1 and table S1were collected fromarticles
reviewing enzymatic temperature adaptation
(4, 54) and from articles identified from a
PubMed search for the terms “thermophile,”
“psychrophile,” “mesophile,” “activity vs. tem-
perature,” “activity versus temperature,” and
“temperature adaption.” The Topt values listed
in table S1 are the temperatures of maximal
activity from activity versus temperature ex-
periments for the stated enzyme.

KSI sequence identification, cloning,
mutagenesis, expression, and purification

The sequence of thermoKSI was obtained from
a protein BLAST search (https://blast.ncbi.nlm.
nih.gov/Blast.cgi) against the sequence of
P. putida KSI sequence (referred to as “meso-
KSI” herein). Default BLAST parameters were
used (Database=nr, Expect Threshold= 10,word
size = 6, matrix = BLOSSUM62, Gap Costs =
Existence: 11 Extension: 1, Compositional Ad-
justments = Conditional compositional score
matrix adjustment) except for “Max Target Se-
quences,” which was changed from 500 to
1000 to increase the number of KSI orthologs

in the output. Hits were cross-referenced with
the literature to identify KSI orthologs from
organisms that grow at high temperatures.
The most thermophilic organism identified
in this set was M. hassiacum (referred to as
“thermoKSI” herein), which grows at 65°C
(Fig. 1C) (21, 22). The gene encoding the
thermoKSI protein sequence (MSTPQDNAN-
TVHRYLEFVAKGQPDEIAALYADDATVEDP-
VGSEVHIGRQAIRGFYGNLENVQSRTEVKT-
LRALGHEVAFYWTLSIGGDEGGMTMDII-
SVMTFNDDGRIKSMKAYWTPENITQR) was
ordered from GenScript and cloned into a
pET-21c vector using the Gibson Assembly
Protocol (New England BioLabs). The gene
encoding mesoKSI was previously cloned
into a pET21c vector and used here (55).
QuikChangeII (Agilent) site-directed muta-
genesis was used to incorporate mutations into
these thermoKSI and mesoKSI pET21c plas-
mids. Mutations were confirmed by sequenc-
ng miniprep DNA from DH5a cells on an
ABI3730xl capillary sequencer (Elim Biophar-
maceuticals). The constructs were expressed
in E. coli BL21(DE3) cells and purified as pre-
viously described (55).

KSI kinetic measurements

The KSI substrate 5(10)-estren-3,17-dione
[5(10)EST] was purchased from Steraloids
(Newport, RI). Reactions of purified mesoKSI
and thermoKSI with 5(10)EST were moni-
tored continuously at 248 nm using a Perkin
Elmer Lambda 25 UV/Vis spectrometer with an
attached VWR digital temperature-controlled
circulating water bath. Temperatures within
the cuvettes were checked before and after re-
action using a platinum electrode thermistor
(Omega Engineering), and the temperature of
the circulating water bath was modified to
maintain a constant internal cuvette temper-
ature between reactions. Reactions were con-
ducted in 10 mM potassium phosphate (KPi)
buffer, pH 7.2, 0.1 mM disodium EDTA, with
2% dimethyl sulfoxide (DMSO) as a cosolvent
to maintain substrate solubility. The kinetic
parameters kcat and KM were determined by
fitting the observed initial velocity of each re-
action as a function of 5(10)EST concentration
(9 to 1000 mM; six to eight different substrate
concentrations per experiment) to theMichaelis-
Menten equation. Rates of the background re-
action [reaction of 5(10) EST in 10 mM KPi
buffer, pH 7.2, 0.1 mM disodium EDTA, with
2% DMSO without enzyme] were determined
at 25°, 30°, and 65°C and were orders of mag-
nitude slower than our slowestmutant at each
temperature, indicating minimal involvement
of the background reaction relative to the
enzyme-catalyzed reaction in our experiments.
Reported values of kcat and KM in table S2 are
the average plus or minus one standard de-
viation of two to seven independent experi-
ments with at least two different enzyme

concentrations varied by at least 2.5-fold from
different enzyme preps and on different days.

KSI stability measurements

The stabilities of WT and mutant mesoKSI
and thermoKSI variants were determined by
monitoring the change in intrinsic tryptophan
fluorescence upon equilibrium unfolding in
the denaturant urea. A stock solution of KSI
was diluted into different concentrations of
urea (final [urea] = 0 to 9 M in 40 mM potas-
siumphosphate buffer, pH 7.0 or 40mMacetic
acid-sodium acetate buffer, pH 5.0; 24 to 64
urea concentrations per variant) in a 96-well
plate. Plates were sealed and incubated at
room temperature for 18 to 366 hours. For each
variant, multiple, consecutive measurements
were made on each sample, hours apart, to
ensure that the system was at equilibrium.
Tryptophan residues were excited at 290 nm,
and their fluorescence emission was moni-
tored at 370 to 420 nm (10-nm steps) on a
Tecan Infinite M200 Pro Plate Reader. Fluo-
rescence intensity at all emission wavelengths
examined showed a two-state transition with
increasing [urea]. The data were fit to a model
of an equilibrium between folded dimer (F2)
and unfolded monomer (U; Eq. 1):

F2 ⇌ 2U ð1Þ
where KU , the equilibrium constant for KSI
unfolding, equals

KU ¼ 2PT
fU2

1� fU

� �
ð2Þ

and

DGU ¼ �RT lnðKUÞ
¼ DGH2O

U �m½urea� ð3Þ

DGH2O
U ¼ ð½urea�50 �mÞ � RT lnðPTÞ ð4Þ

with PT being the total enzyme concentration,
fU being the fraction of unfolded enzyme, R
being the ideal gas constant (1.99 × 10−3 kcal
mol−1 K−1), T being the temperature (298 K),
DGH2O

U being the Gibbs free-energy change in
the absence of urea, m being the dependence
of the free energy of unfolding on denaturant
concentration, and [urea]50 being the urea con-
centration at the midpoint of the unfolding
curve. See supplementary text S4 for further
discussion of KSI stability measurements.
In support of reversible KSI unfolding in

urea, the same DGH2O
U was obtained from fold-

ing curves starting with unfolded mesoKSI or
thermoKSI at 10 M urea followed by dilution
into different final concentrations of urea.
DGH2O

U values reported in table S3 are the ave-
rage fromat least two independent experiments
using different final enzyme concentrations
varied by at least 2.5-fold in the range of 1 to
25 mM enzyme. Reported errors are the stan-
dard deviations of these values.
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X-ray crystallography
ThermoKSI WT crystals were grown in pres-
ence of the transition state or intermediate
analog DNP. In a second enzyme construct,
the D38Nmutation (D40N with mesoKSI num-
bering) was introduced to mimic the protonated
general base in the enzyme-intermediate com-
plex and to increase the affinity of the enzyme
for DNP relative to thermoKSI WT, as pre-
viously described with mesoKSI (17, 56).
ThermoKSI (1 ml at 1 to 2 mM in 40 mM
potassium phosphate, pH 7.2), preincubated
with 4 mM DNP, was mixed with 1 ml of
precipitant solution (1.4 to 2 M ammonium
sulfate, 10 mM potassium phosphate, pH 7.2).
Crystals formed after incubation at room tem-
perature in 1 to 2 weeks. All single-crystal
x-ray diffraction data was collected at Stan-
ford Synchrotron Radiation Lightsource’s
(SSRL’s) BL9-2 at 100 K and using a Pilatus
6M detector in shutterless mode. Before data
collection, all crystals’ mother liquor was ex-
changed with paratone oil and crystals were
mounted on loops and flash-frozen in liquid
nitrogen. All diffraction datasets were pro-
cessed using the XDS package (57) and the
programs pointless (58) and aimless (59), as
implemented in the autoxds in-house pro-
cessing script at SSRL (57).
The thermoKSI WT structure was solved

experimentally. A native dataset was collected
at 14,000 eV (l = 0.88557 Å) to 1.57-Å reso-
lution. A second dataset of exceptional quality
and strong anomalous signal was collected at
6000 eV (l = 2.06633 Å; see table S4). Ano-
malous signal was obtained from native meth-
ionine residues and sulfate ions bound to the
protein (table S5). The graphical software
HKL2MAP (60) using SHELXC/D/E programs
(60, 61) was used to process the 6000-eV
anomalous dataset and the 14,000-eV native
dataset together. SHELXD was looking for
10 sites (five Met for each monomer in the
crystallographic asymmetric unit) at 4.00-Å
resolution and found 12 sites, including
ordered sulfate ions from the crystallization
mix (CFOM = 67.2, CCall = 47.2, CCwk = 20.1).
Refining the sites and phases with an initial
estimated solvent content of 40%, combined
with automated model building as imple-
mented in HKL2MAP, resulted in a clear map
with a model built in the P4132 space group
(fig. S2). This initial model was used for fur-
ther automatic model building with Buccaneer
(62) and was subsequently used for molecular
replacement of the native dataset using Phaser
(63). The native dataset was used to further
build and refine the structure (see below). The
asymmetric unit contained two monomers.
The N-terminus methionine, the loop 85-91,
and the last two residues in the C terminus
were disordered and not included in the WT
model. No clear electron density for bound
DNP was observed, and this structure was

primarily used as a molecular replacement
model (see below).
ThermoKSI D38N-DNP diffraction data was

collected using a wavelength of 0.88557 Å and
to a resolution of 1.25 Å. Initial phases were
obtained by molecular replacement using the
experimentally solved thermoKSI WT struc-
ture as a searchmodel and using Phaser (63).
For both structures, after molecular replace-

ment, model building was carried out with the
program Buccaneer (62) andmanually in Coot
(64). Models were refined manually after vis-
ual inspection with Coot and using phenix.
refine (65). Torsion-angle simulated anneal-
ing (as implemented in phenix.refine) was
used during the initial stages of refinement.
Ligand restraints were generated using the
Elbow (AM1) (66) and the Grade server (http://
grade.globalphasing.org/cgi-bin/grade/server.
cgi). Model quality was checked by MolProbity
(67) and gave an overall score of 1.53 and 1.36,
for thermoKSIWTand thermoKSID38N•DNP,
respectively. Data and model statistics are
presented in table S4.
Two very similar electron densities of un-

known molecular identity were observed on
the protein surface, next to Glu43 and Asp95 in
both structures. These electron densities were
modeled as guanidine, which was used to
wash purification columns and is expected to
be present in the purification buffer in trace
amounts.

Simulations of WT and mutant mesoKSI and
thermoKSI variants

The initial mesoKSI WT structure was based
on the monomeric unit in the 1.1-Å resolution
crystal structure of themesoKSID40Nmutant
complexed with DNP. As described above, the
D40N mutation mimics the protonated gen-
eral base in the enzyme-intermediate complex
and increases the affinity of the enzyme for the
transition state analog DNP relative to meso-
KSI D40 (17, 56). As was done previously, the
dimeric KSI structure in fig. S6A was created
using the “symmetry mates” utility in PyMol
to generate an inverted image, nearest neigh-
bor, monomer 4 Å from the mesoKSI WT
monomer (18). The mesoKSI F86W, mesoKSI
D103S, and mesoKSI F86W/D103S mutants
were created using theMaestro software pack-
age with Schrödinger by mutating the 86 and
103 positions of the mesoKSI WT structure to
tryptophan and serine, respectively (68). The
initial structure of thermoKSI WT was based
on the dimeric unit in the 1.25-Å resolution
crystal structure of thermoKSI D40N com-
plexedwith DNP solved herein (mesoKSI num-
bering used throughout). Missing loops in the
thermoKSIWT structurewere completed using
the Modeller software package (69). As was
done with mesoKSI, the thermoKSI W86F,
thermoKSI S103D, and thermoKSIW86F/S103D
mutants were created by mutating the 86 and

103 positions of the thermoKSI WT to phenyl-
alanine and aspartic acid, respectively.

MM simulations

To prepare the mesoKSI and thermoKSI WT
dimers for MM, their initial structures were
stripped of all surface waters and hydrogens
from their crystal protein databases (PDB).
There were no structural waters present in
the mesoKSIWT, whereas the active-site water
molecule observed between S103 and DNP in
the thermoKSI crystal structure was preserved
for the thermoKSI WT simulation. The proto-
nation states for both proteins were deter-
mined at a pH of 7.0 by using the web-based
protonation prediction tool, H++ (v. 3.0) (70).
Side-chain titration curves predicted the ex-
pected protonation states for each residue in
the mesoKSI and thermoKSI. To prepare the
eight solvated mesoKSI and thermoKSI dimer
systems, the tleap utility in the AmberTools 16
suite (71) was usedwith the ff14SB (72) and the
generalizedAmber Force Field (GAFF). (73, 74)
The DNP ligand charges were computed with
the restricted electrostatic potential (RESP)
scheme from R.E.D Server (75). The aforemen-
tionedmesoKSI and thermoKSImutants were
generated from theseWT structures described
above. The proteins were solvated by ~31,000
explicit SPC/Fw water molecules with 12 Na+

ions tomaintain charge neutrality, resulting in
a near cubic simulation box with dimensions
of ~100 Å by 100 Å by 100 Å. Using the GPU-
accelerated classical molecular dynamics code
OpenMM (76), minimizations were performed
where the mesoKSI and thermoKSI backbones
were held rigid and the explicit solvent and
nonbackbone atoms were allowed to relax.
These optimized structures were then heated
over 50 ps to 300 K using a Langevin thermo-
stat with a friction coefficient of 1 ps−1 in the
constant isovolume-isothermal (NVT) ensem-
ble. Constant isobaric-isothermal (NPT) ensem-
ble simulations were performed for 10 ns with
the mesoKSI and thermoKSI backbones har-
monically constrained (force constant, k =
1.0 kcal/mol) using a Monte Carlo barostat
at a pressure and temperature of 1 bar and
300 K, respectively. The constraints on the
mesoKSI and thermoKSI backbones were
lifted, and the entire system was allowed to
propagate freely according to the classical
equations of motion for 10 ns for all mutants.
Lastly, production level NPT dynamics were
performed for 100 ns without any constraints
for all eight protein systems.

MM and QM/MM optimizations

To compute the hydrogen-bond distances in
the active sites of themesoKSI and thermoKSI
structures, representative snapshots were cho-
sen from the 100-ns NPT classical molecular
dynamics trajectories (fig. S5A). As was per-
formed in our previous studies on mesoKSI
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WT, QM/MM optimizations were performed
on 20 snapshots for each mutant chosen equi-
distant in time from the NPT trajectories
(18). Using the Visual Molecular Dynamics
(VMD) (77) software package, spherical cutouts
for QM/MM optimizations were generated
from these frames by selecting all molecules
(protein and water) within 40 Å from the
ligand. These truncated structures were first
minimized using the Amber force field with
no constraints and then with QM/MM, where
the QM atoms were described with the B3LYP
exchange-correlation functional and Grimme’s
D3 dispersion correctionwith the 6-31G** basis
set (73, 74, 78). For the QM/MM optimizations,
the MM atoms in the protein and water were
described with the Amber force field and the
SPC/Fw water model, respectively. (73, 74) Pre-
viously, convergence of the D103-DNP and Y16-
DNP hydrogen-bond distances in mesoKSI
WT was shown with a QM region containing
the sidechains of Y16, Y32, Y57, and D103
and the ligand DNP; further increases in the
size of the QM region had no meaningful ef-
fect on the lengths of the D103-DNP and Y16-
DNP hydrogen bonds (18). Thus, in mesoKSI
mutants, a QM region including the side chain
of residues D103/S103, F86/W86, Y16, Y57, Y32,
andDNPwas chosen (fig. S5A). The equivalent
residues were chosen in the thermoKSI mu-
tants (fig. S5A). Water molecules that were
involved in the hydrogen-bond network around
the ligand were also included in the QM region
for both protein systems.

Literature search for protonated Asp
and Glu residues

Bacterial enzymes with protonated Asp/Glu re-
sidues were identified from a review article on
perturbed amino acid pKa values (79) and from
a PubMed search for the terms: “perturbed
pKa,” “protonated Asp,” “protonated Glu,” “glu-
tamic acid,” and “aspartic acid” (fig. S13). En-
zymes not found in bacteria with known
culture temperatures were excluded from fur-
ther analysis.

Obtaining growth temperatures (TGrowth)

Median organism optimal growth tempera-
tures for bacteria in culture were obtained
fromhttps://doi.org/10.5281/zenodo.1175608 (3).
For the analyses below,we searched specifically
for orthologous enzyme sequences from bac-
teria with growth temperatures in this dataset.

Identification of putative protonated Asp and
Glu residues in the PDB and computation
of their association with TGrowth

We used a previously published dataset of Asp-
Asp, Asp-Glu, and Glu-Glu interactions identi-
fied from the PDB,with carboxyl O–Odistances
<3.0 Å. The close proximity of these two Asp/
Glu residues, enforced by the surroundings,
increases the likelihood that one of these car-

boxylate residues is protonated (80). We re-
stricted our analysis to hydrogen bondswithin
a protein monomer, because intermolecular
hydrogen bonds may be a consequence of
nonphysiological crystal contacts, and to those
with crystallization pH values ≥6 to avoid arti-
factual Asp/Glu interactions that result from
the low-pH conditions. The remaining posi-
tions were manually inspected, and metal
ligands were excluded from further analysis
because these Asp/Glu residues will be depro-
tonated despite close proximity to another
Asp/Glu residue. We further restricted our
dataset to Asp/Glu residues found in at least
80% of the orthologous sequences in the
lowest 10°C temperature bin. This additional
filtering step increases the likelihood that we
are examining siteswhere protonatedAsp/Glu
residues provide some fitness advantage (pre-
sumably activity) at low TGrowth, allowing us to
address the interplay between section pres-
sures on activity and stability.
For each PDB ID in the dataset above, we

gathered the corresponding UniProtKB acces-
sion and standard protein names and ob-
tained the corresponding full-length (WT)
protein sequence. We then mapped the PDB-
defined index for each potential carboxylic
acid-carboxylate hydrogen bonding residue
to the corresponding position in the UniProt
sequence and removed duplicate entries. See
section “Identifying temperature-associated
residues using logistic regression models” be-
low for a description of how we obtained se-
quences for each protein from organisms with
known TGrowth. We performed correlations be-
tween the presence of these protonated Asp
and Glu residues and TGrowth as in the section
“Identifying temperature-associated residues
using logistic regression models” below, with
two differences: (i) For each protein with a
protonated Asp and Glu residue, the refer-
ence sequence used for alignment was the
WT sequence obtained from UniProtKB, and
(ii) enzymes with filtered and dereplicated
sequence sets smaller than 200 sequences
were excluded from further analysis to ensure
enough sequences for robust statistical analy-
ses. Significance threshold, corrected for mul-
tiple hypothesis testing, was p < 1.5 × 10−4

(Bonferroni correction; p < 0.01/67 positions).

Acquisition of genomic KSI sequences

KSI sequenceswere obtained from theNation-
al Center for Biotechnology Information’s
(NCBI’s) protein database using the recom-
mended enzyme name from the BRENDA
database: “steroid delta-isomerase” (81, 82).
The resulting sequences were cross-referenced
against those of organisms with known values
of TGrowth [see section “Obtaining growth
temperatures (TGrowth)] (3). The resulting
temperature-annotated sequences were aligned
to thermoKSI using BioPython pairwise2 mod-

ule (matrix = blosum62, gap open penalty =
−10, gap extension penalty = −0.5; similar
results are observed if alignments are per-
formed to mesoKSI). Duplicate sequences were
removed. To remove sequences with poor
alignments, we generated 1000 random per-
mutations of thermoKSI and performed pair-
wise alignment against the original thermoKSI
sequence (againusing theBioPythonpairwise2).
The median and standard deviation of the
distribution of simulated randomly per-
muted alignment scores were calculated and
temperature-annotated KSI sequences with
alignment scores less than 40 (median +
4*standard deviations) were excluded from
further analysis. Only sequences that contained
the KSI general base (D40 in mesoKSI) were
used in further analyses (Fig. 1B).

Acquisition and analysis of metagenomic
KSI sequences

All translated open reading frames from the
IMG/M (Mar 2018) database of metagenomes
(83) were searched for sequences that fit a
KSI sequence pattern using the NERSC com-
puting services (84), enabled by the FICUS
program (https://jgi.doe.gov/user-programs/
program-info/ficus-overview/). The sequence
pattern was based on a manually curated,
structure-based (85) multiple sequence align-
ment of canonical KSIs. This search yielded
659,576 sequences from 5694 metagenomic
samples. We proceeded to analyze either meta-
genome samples with annotated collection
temperatures or samples taken from environ-
ments with approximately constant temper-
atures available in the literature (e.g., hot pools).
The list of sequences was thus reduced to 1114
sequences associated with environmental tem-
peratures that range from 0° to 90°C. The
multiple sequence alignment was then used
to predict the amino acid present in positions
corresponding to amino acid 103 of mesoKSI.
This computation was based on adding each
metagenomic sequence to the MSA by using
a specific module of MAFFT (86). Only se-
quences that contained the KSI general base
(D40 in mesoKSI) were used in further analy-
ses (Fig. 1B).

Generation of phylogenetic trees

Three types of phylogenetic trees are used
herein:
1. Enzyme sequence-based trees. Multiple

sequence alignments of orthologous sequen-
ces of a given enzyme type were generated
using MAFFT (86). Alignment positions that
contained gaps in >75% of sequences were
trimmed using the program TrimAl (87). The
program IQ-Tree was used to generate maxi-
mum likelihood phylogenetic trees from the
resulting multiple sequence alignment using
default parameters (88). Selected examples of
the resulting phylogenetic trees were visualized
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and plotted with the Interactive Tree of Life
(iTOL) (89). An example for KSI is shown in
Fig. 3B, where each leaf corresponds to a dif-
ferent KSI sequence.
2. Bacterial species tree. We constructed the

bacterial species phylogenetic tree consist-
ing solely of organisms with known values of
TGrowth by subsetting the genome-based phy-
logenetic tree from the Genome Taxonomy
Database (GTDB) (3, 90). Leaf names (acces-
sion indexes) were mapped to NCBI organism
names, and these organism names were parsed
to genus and species (using BioPython’s Phylo
module and the R package ape) (91, 92). Re-
dundant genus- and species-mapped tree leaves
(introduced upon dropping strain and sub-
species information) were removed, and leaves
associated with organisms absent in our
growth temperature–associated list of organ-
isms were removed. The trimmed phyloge-
netic tree was visualized and plotted with
iTOL (fig. S19) (89).
3. Bacterial species tree (BacDive subsetted).

We constructed an additional bacterial species
phylogenetic tree consisting of organismswith
experimentally derived values of TGrowth exclu-
sively from the BacDive database (a subset of
the larger dataset of bacterial TGrowth values
from https://doi.org/10.5281/zenodo.1175608)
(3, 20). This tree was constructed as described
for the full bacterial species tree, except sub-
setted to the smaller, but similarly diverse, set
of bacterial genus and species identifiers. This
tree was used in the calculation of phyloge-
netic signals (DResidue) because of time limi-
tations from using the larger tree.

Identifying temperature-associated residues
using logistic regression models

We obtained a list of every enzyme within the
BRENDAdatabase fromwww.brenda-enzymes.
org/ and extracted the recommended names(s)
for each enzyme (entry) in the database (n =
6531 nonredundant enzymes). To obtain se-
quences for each protein from organisms with
values of TGrowth, we used NCBI Entrez queries
[via the Entrezpy package (93)] to obtain Entrez
unique identifiers (UIDs) for each protein from
NCBI’s protein database (63) for each organism.
Entrez queries were of the following structure:
[“protein name”][PROTEIN]AND [“organism”]
[ORGANISM]. Collected UIDs [GenInfo identifiers
(GIs)] were mapped to UniProtKB accessions
via a mapping database and script provided by
the NCBI (ftp://ftp.ncbi.nlm.nih.gov/genbank/
livelists/gi2acc_mapping/), and sequenceswere
extracted from the NCBI nonredundant pro-
tein database (ftp://ftp.ncbi.nlm.nih.gov/blast/
db/FASTA/nr.gz) with a custom python script.
Sequences were then dereplicated and sub-

setted to those containing only canonical
amino acid one-letter codes (i.e., the standard
20 amino acids) and were additionally sub-
setted to those corresponding to organisms

represented in the large bacterial species tree
(tree type 2; 5852 organisms). Finally, enzyme
records were subsetted to those containing at
least 20 distinct organisms to provide enough
organisms for statistically robust analyses (see
below). A total of 2194 enzymes contained
representatives for further analysis following
these procedures.
We performed pairwise alignments to a se-

quence representative to generate a multiple
sequence alignment for each enzyme. First, to
select a reference sequence for these pairwise
alignments, pairwise all-by-all blast (via the
NCBI BLAST+ 2.7.1 command line application
blastp, using the following nondefault param-
eters: “-outfmt 6 -max_hsps 1 -evalue 10e10
-max_target_seqs 100000 -num_threads 20”)
was performed on a locally generated BLAST
database of a subset of the filtered and de-
replicated sequences. This subset was obtained
by sampling up to 250 sequences with a length
within 5% of the median sequence length for
each enzyme. If more than 250 sequences met
this sequence-length constraint, a random sam-
ple of 250 of themwere used for all-by-all blast.
Then, cumulatively summed bit-scores were
calculated for each candidate representative
sequence, and the sequence with the largest
summed bit-score was selected as the pairwise
alignment representative. Second, to remove
sequences with poor alignments, we gen-
erated 500 random permutations of each
reference sequence and performed pairwise
alignment against the assigned reference
sequence (via the BioPython Bio.Align.
PairwiseAligner class with the following pa-
rameters: open_gap_score=-10, extend_gap_
score=-0.5, substitution_matrix=Bio.SubsMat.
MatrixInfo.matlist.blosum62). The mean
and standard deviation of the permutation
alignment scores were calculated, and the
mean+3*standard deviation was subsequently
used as a per-enzyme alignment score lower
threshold to remove sequences with low sim-
ilarity to the reference (below).
Global pairwise alignments between each

sequence from NCBI (query) to our reference
sequence (subject) were computed and the full
alignment was trimmed to nongapped posi-
tions in the alignment reference sequence to
generate per-enzyme trimmed multiple se-
quence alignments (again via the BioPython
Bio.Align.PairwiseAligner class with the follow-
ing parameters: open_gap_score=-10, extend_
gap_score=-0.5, substitution_matrix = Bio.
SubsMat.MatrixInfo.matlist.blosum62).
Aligned sequences with alignment scores be-
low the per-enzyme alignment score threshold
were removed from the rawmultiple sequence
alignment. To avoid statistical bias from over
representation of particular bacteria in the
alignment, sequences corresponding to the
same organism were collapsed into a con-
sensus sequence derived from the most fre-

quent nongapped residue identity at each
aligned position (or a gap if no other residue
identities were observed).
These per-enzyme consensus alignments

were then parsed and joined with the growth
temperature dataset to yield delimited files in
which a given organism name, reference-
indexed alignment position, consensus residue
identity, and associated growth temperature
(the TGrowth of the organism from which it
came) constituted a single observation (row).
Each amino acid at each position in each set
of temperature-associated alignments for each
enzyme were subjected to a logistic regression
model, corresponding to ~17,000,000 total re-
gressions performed.
For all logistic regressions computed, we

treated TGrowth as the continuous predictor
and the presence or absence of one of the
20 amino acids (encoded as 1 or 0, respectively)
as the response. To prepare the temperature-
associated alignments for regression, gapped
positions and those corresponding to organ-
isms not present in the bacterial species phy-
logenetic tree (prepared as per the section
“Generation of phylogenetic trees”) were re-
moved. Logistic regressions were preformed
using the glm function of base R (with all de-
fault parameters except family=binomial). Cor-
relations between the presence of a specific
amino acid at a specific position in a specific
enzyme and TGrowth were deemed significant
if the p value for the logistic regression was
<5.9 × 10−10 (Bonferroni correction; p < 0.01/
17,000,000 residue positions).

Calculations of phylogenetic signal for
temperature-associated residues

We used the method of Fritz and Purvis to
measure the phylogenetic signal (DResidue) for
binary presence or absence (coded as 1 or 0,
respectively) for each temperature-associated
residue on the bacterial species tree (29). We
performed this analysis with a larger set of
temperature-associated residues, defined at p <
0.05/17,000,000 = 2.9 × 10−9. This more per-
missive threshold was used to include posi-
tions at the edge of our original p value
threshold (p < 5.9 × 10−10) and yield a more
conservative inference when assessing the
contribution of horizontal gene transfer to
apparent temperature-associated residue
changes (see fig. S22). We calculated phylo-
genetic signal using both the enzyme sequence-
based trees (tree type 1) and the bacterial
species tree (BacDive subsetted)(tree type 3);
the former subsetted to the leaves found in
the latter for each enzyme. Values of DResidue

for a given residue generally agreed for the
two types of trees used, suggesting that the
contribution of horizontal gene transfer to
apparent temperature-associated residue
changes is not dominating our observed trends
(see fig. S22).
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For a given enzyme, alignment position,
and residue identitymeeting thep value thres-
hold defined, we calculated the phylogenetic
signal using a binary encoding (1 or 0) for pre-
sence of the residue of interest as the organis-
mal trait. This calculation was first performed
using the bacterial species tree (BacDive sub-
setted) trimmed to contain only species rep-
resented in the alignment of that site. The
calculation was executed using the phylo.d
function in the Comparative Analyses of Phylo-
genetics and Evolution in R (caper) R pack-
age (94) with all default parameters except
permut=1000. Subsequently, each significant
enzyme, alignment position, and residue iden-
tity set was subjected to an analogous calcula-
tion (as before, using the phylo.d functionwith
permut=1000) using the enzyme sequenced-
based tree subsetted to leaves also present in
the trimmed bacterial species tree (BacDive
subsetted) (subsetting the two trees so they
contain the same leaves allows for head-to-
head comparison of phylogenetic signal values,
as this parameter is sensitive to tree size) (29).
Finally, calculated phylogenetic signal values
using the two trees were collated and joined
on the enzyme, alignment position, and resi-
due identity as a unique index.

Identifying site-specific changes in
temperature-associated residues

We identified enzyme positions where one
amino acidwas associatedwith lowTGrowth and
another with high TGrowth. In cases where
multiple amino acids are associated with low
and/or high TGrowth, we used the amino acid
with the lowest p value for temperature as-
sociation. The amino acid identities of these
residue changes are shown in Fig. 5B and in
table S10.

Identifying representative enzyme structures

To identify x-ray crystal structures in the PDB
that correspond to the enzymes in our data-
set, we used NCBI’s command line applica-
tion to BLAST each representative enzyme
sequence against the PDB. For enzymes with
annotated catalytic residues in the Mecha-
nism and Catalytic Site Atlas (M-CSA), down-
stream analyses were performed on the
structure with the highest bit score with
annotated catalytic sites in M-CSA (43). For
enzymes not represented in the M-CSA, the
structure with the highest bit score was used,
with a minimum bit score cutoff of 200.

Identifying temperature-associated
metal ligands

To identify metal sites whose ligands are
temperature-associated, we searched the rep-
resentative structures of each enzyme in our
dataset (identified above) for bound metal
ions using the Bio.PDB module of Biopython
(95). All representative structures with bit

scores >200 were analyzed to increase the
coverage of metal-containing orthologs. By
explicitly requiring structural confirmation
of metal sites, we have increased confidence
in the sites discussed herein but may be miss-
ing metal sites that are not represented in the
PDB. For our analysis of active-site Zn2+ ions,
we restricted our dataset to only enzymes
whose structures contained Zn2+ and whose
Zn2+ ligand(s) are temperature-associated. The
structures of each Zn2+-containing enzyme
with temperature-associated ligands was then
manually examined and cross-referenced with
the literature to distinguish active-site Zn2+

ions from structural sites (table S13).
Structural metal binding sites are typically

formed by at least four metal ligands (47, 51).
Thus, to identify metal binding sites acquired
at high growth temperature, we looked specif-
ically for cases where ≥3 metal ligands are
associated with high TGrowth. (We chose a cut-
off of three metal ligands to include sites
where one metal ligand is conserved and acts
as a founder for the rest of the site or is weakly
temperature-associated.) Structures of the re-
sulting metal sites were then manually exam-
ined and cross-referenced with the literature
to distinguish structural from active-site metal
binding sites (table S14).

Identifying pairwise residue interactions
and networks

The Bio.PDB module of Biopython was used
to analyze the representative structures of each
enzyme identified above (95). Wemapped each
temperature-associated residue to structure
by pairwise alignment between the reference
sequence identified in the section “Identifying
temperature-associated residues using logistic
regression models” and the sequence of the
PDB structure using the pairwise2module of
Biopython (any N-terminal tags included in
the PDB sequence were excluded from the
alignment). Temperature-associated residues
that could not be mapped to structure (e.g.,
not modeled, or part of a protein domain not
crystalized) were excluded from future anal-
ysis. Contacts with each enzyme position with
a temperature-associated residue or contacts
with M-CSA-annotated catalytic residues were
identified using the NeighborSearch class of
Bio.PDB, considering only side-chain atoms
with a contact distance <5 Å. Temperature-
associated residues at the enzyme surfacewere
identified using the SurfaceDepth class of Bio.
PDB, which uses Michel Sanner’s MSMS pro-
gram for molecular surface calculations (96).
Co-occurrence between temperature-associated

residues was assessed by chi-square test. For
each sequence in our dataset, the residue iden-
tities at the two positions being compared
were recorded. Two amino acids were con-
sidered to co-occur if the frequency of ob-
serving these amino acids in the same sequence

at the positions being compared was signif-
icantly different than the expected frequen-
cies of observing these two amino acids by
chance [p < 0.01/(20*20 possible amino acid
pairs)]. Expected frequencies of amino acid
pairs were calculated as the product of the
individual observed frequencies of each amino
acid in bacteria (97). Contacting temperature-
associated residues were considered to “change
together” with temperature if the direction
of their temperature-associated trend was the
same [i.e., they are both associated with either
low or high TGrowth (Fig. 4A)] and the tran-
sition points (i.e., the value of TGrowth where
the probability of observing the temperature-
associated residue is half its maximum value)
of their logistic regression fits were within
±10°C of one another. Pairwise interactions in
Fig. 5C and networks can be downloaded from
Dryad (98) and include temperature-associated
residues with p values of <1 × 10−15. This more
stringent p value cutoff increases our confi-
dence in defining these networks.
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and also consider how networks of stabilizing interactions develop.

temperatures,their larger dataset, they identified patterns of individual amino acid substitutions that are favored at higher 
WithKSI, they observed a trade-off between activity and thermal stability that comes down to a single active-site residue. 

data from a diverse set of bacterial enzymes to reveal the molecular determinants of thermal adaptation in enzymes. For
experimental work on thermophilic and mesophilic variants of the enzyme ketosteroid isomerase (KSI) with bioinformatic 

 combined richet al.stable structure. Both features are important and can be unrelated or antagonistic. Pinney 
Enzymes strike a delicate balance between features that enhance chemical reactivity and those that contribute to
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