## **Supporting Information**

# uPIC–M: efficient and scalable preparation of clonal single mutant libraries for high-throughput protein biochemistry

Mason J. Appel<sup>1</sup>, Scott A. Longwell<sup>2</sup>, Maurizio Morri<sup>3</sup>, Norma Neff<sup>3</sup>, Daniel Herschlag<sup>1,\*</sup> & Polly M. Fordyce<sup>2,3,4,5,\*</sup>

<sup>1</sup>Department of Biochemistry, Stanford University, Stanford, CA 94305

<sup>2</sup>Department of Bioengineering, Stanford University, Stanford, CA 94305

<sup>3</sup>Chan Zuckerberg Biohub, San Francisco, CA 94110

<sup>4</sup>Department of Genetics, Stanford University, Stanford, CA 94305

<sup>5</sup>ChEM-H Institute, Stanford University, Stanford, CA 94305

\*Corresponding authors (<u>herschla@stanford.edu</u> and <u>pfordyce@stanford.edu</u>)

### TABLE OF CONTENTS

| Figure S1. Timeline of uPIC–M library generation                                          | S3  |
|-------------------------------------------------------------------------------------------|-----|
| Figure S2. Amplification of window-specific sublibrary pools from an oligo array          | S4  |
| Figure S3. Quantification of E. coli genomic DNA in diluted mutant culture templates      | S5  |
| Figure S4. Selection of PCR conditions for SpAP mutant amplicons                          | S6  |
| Figure S5. Quantification of amplicon DNA concentrations per sublibrary plate             | S7  |
| Figure S6. Testing Tn5 tagmentation reaction conditions.                                  | S8  |
| Figure S7. Electropherograms of tagmented and amplified mutant sublibraries               | S9  |
| Figure S8. Histogram of variant:WT read ratios among single, double, and triple and great | er  |
| mutants                                                                                   | S10 |
| Figure S9. Comparison of observed and simulated single mutant frequency distributions     | S11 |
| Figure S10. Plasmid map of PURExpress-SpAP-eGFP                                           | S12 |
| Figure S11. Complete DNA sequence of PURExpress-SpAP-eGFP plasmid                         | S13 |
| Figure S12. Protein sequence of SpAP-(10mer linker)-eGFP                                  | S14 |
| Table S1. Time and cost calculations for uPIC–M and conventional mutagenesis              | S15 |
| Table S2. Oligo array and window design details for SpAP scanning mutant library          | S16 |
| Table S3. Concentration of purified sublibrary mutagenic primer pools                     | S17 |
| Table S4. Expected mutant yields from simulations of mutant sampling.                     | S18 |
| Table S5. Variant composition of small-scale QuikChange-HT reactions                      | S19 |
| Table S6. Sublibrary transformation and colony picking results.                           | S20 |
| Table S7. Amplicon DNA and library concentration statistics.                              | S21 |
| Table S8. Unique single mutant yields for the SpAP scanning library.                      | S22 |
| Table S9. Comparison of uPIC–M performance with simulated picking experiments, per        |     |
| sublibrary                                                                                | S23 |
| Table S10. Oligo array price summary                                                      | S24 |



Figure S1. Timeline of uPIC–M library generation.

Figure S2. Amplification of window-specific sublibrary pools from an oligo array.

(A) Microelectrophoresis results for PCR-amplified sublibrary mutagenic primers after column purification. (B) Plot of predicted and observed lengths for mutagenic primer pools corresponding to sublibrary windows 1–13.



**Figure S3**. Quantification of *E. coli* genomic DNA in diluted mutant culture templates. (**A**) Standard curve of *E. coli* genomic DNA concentration measured by qPCR using previously reported primers to the *rodA* gene. Each point represents the average of 4 technical replicates. (**B**) Measurement of *E. coli* genomic DNA concentrations in diluted mutant cultures by qPCR. Six saturated mutant cultures were serially diluted in H<sub>2</sub>O and assayed alongside the standard curve in (**A**). The average of two technical replicates is plotted for each of the six biological replicates at each dilution. The black horizontal line represents the median across biological replicates. **A** 

1



Figure S4. Selection of PCR conditions for SpAP mutant amplicons.

Twelve sample wells containing *E. coli* cultures of SpAP mutants grown to saturation were selected from sublibrary plates 1 and 5 (6 each). Cultures were then diluted from 1:10 to  $1:10^4$  with H<sub>2</sub>O and used as PCR templates for 18 or 25 cycles of PCR amplification using KAPA HiFi polymerase. Primers were selective for a 1737 bp region of the PURExpress-SpAP-eGFP plasmid (F: 5'-CCCGCGAAATTAATACGACTCACTATAGG 3'; R: 5'- CTTGCTCACCATGCCACTG -3'). Following PCR, samples were diluted with H<sub>2</sub>O and loading buffer and run at equal volumes on a 0.8% TAE agarose gel.



**Figure S5**. Quantification of amplicon DNA concentrations per sublibrary plate. DNA concentrations were measured for each sublibrary plate (184 or 368 sample wells out of 384 possible) using the PicoGreen fluorescence assay. Amplicon samples were diluted 5-fold with H<sub>2</sub>O and measured alongside a  $\lambda$  phage DNA standard curve.



Figure S6. Testing Tn5 tagmentation reaction conditions.

(A) Comparison of library content and concentration with or without AmpureXP bead cleanup of Tn5 templates. Following mutant amplicon preparation, two unique scanning library sample plates were either purified by AmpureXP bead cleanup or simply diluted prior to Tn5 tagmentation. The Tn5 stock used here was in-house purified from the protocol of Picelli et. al., 2014. (B) Comparison of library content and concentration at template DNA concentrations of 0.1–0.5 ng/uL, Tn5 enzyme dilutions of 1/50 and 1/100, and tagmentation times of 3 and 7 minutes. The Tn5 template was purified SpAP amplicon DNA. Samples were allowed to react for specified times, quenched, and then amplified by library preparation PCR (see Materials and Methods). Amplified libraries were purified by AmpureXP bead cleanup and analyzed by microelectrophoresis. In both (A) and (B), DNA peak concentrations represent the integrated signal of the entire library peak (~200–1000 bp).







**Figure S8**. Histogram of variant:WT read ratios among single, double, and triple and greater mutants.

Read counts for variant and WT sequences represent the sum of forward and reverse reads of each genotype, averaged across each nucleotide for each codon substitution. If higher order mutants originated solely from the presence of co-occurring mutations on the same plasmid genome, the rate of WT reads for each substitution would be comparable for all types of mutants. However, a higher variant:WT read ratio for single mutants compared to double, and triple and greater is consistent with the model that many higher order mutants originate from well-to-well cross-contamination during plate handling steps prior to barcoding.



**Figure S9**. Comparison of observed and simulated single mutant frequency distributions. We simulated predicted single mutant frequency distributions per sublibrary (assuming equal relative abundances among individual single mutant genotypes) and calculated the following three parameters: total number of barcodes (of 384 possible) meeting a read depth threshold, fraction of intended single mutants compared to all other library variants, and the number of desired unique single mutants. These parameters were used to simulate picking experiments as described in Results and Discussion, and repeated for 1000 replicates (orange bars). Simulated distributions were plotted alongside observed single mutant frequencies for each sublibrary (blue bars).







#### Figure S11. Complete DNA sequence of PURExpress-SpAP-eGFP plasmid.

GCTAGTGGTGCTAGCCCCGCGAAATTAATACGACTCACTATAGGGTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATAC ATATGCAAAGCCCAGCACCTGCCGCAGCGCCTGCCCCTGCGGCACGTTCCATCGCAGCTACGCCTCCTAAACTGATCGTGGC AATTAGCGTGGACCAGTTTAGTGCAGACTTGTTCTCGGAGTATCGTCAATATTACACCGGAGGTTTAAAGCGTCTTACATCCGAA GGAGCTGTGTTCCCACGTGGTTATCAGAGTCATGCGGCAACAGAAACGTGTCCTGGTCACTCAACGATCCTGACAGGATCACG TCCGTCACGTACGGGTATTATCGCTAATAACTGGTTCGACTTGGACGCAAAGCGTGAGGATAAAAATCTGTACTGTGCTGAGGA AAGCCGCCAATCCTGCGACTCGTGTCGTCTCTGTTGCCGGCAAGGATCGCGCGCCATTATGATGGGTGGCGCCACAGCGGA TCAGGTCTGGTGGTTAGGGGGGGCCTCAGGGGTATGTTTCGTATAAGGGTGTAGCGCCAACTCCCCTTGTAACACAGGTCAATC AGGCCTTTGCACAGCGCTTAGCTCAGCCGAACCCGGGATTTGAGTTGCCTGCTCAGTGCGTCAGCAAGGACTTTCCTGTTCAA GCGGGAAATCGCACAGTGGGTACCGGCCGCTTCGCCCGTGATGCTGGTGACTACAAAGGTTTTCGCATTTCCCCGGAGCAGG ATGCTATGACGCTTGCATTCGCTGCCGCGGCCATTGAAAATATGCAATTAGGGAAGCAGGCCCAGACCGATATTATTAGCATTG GACTGAGCGCTACGGATTACGTGGGACACACCTTCGGCACGGAGGGTACGGAGAGTTGCATCCAAGTGGATCGTTTAGACAC GGAGCTTGGTGCATTCTTTGATAAACTGGATAAGGATGGGATTGACTACGTAGTAGTGCTGACTGCAGATCATGGAGGACACGA TCTGCCCGAACGTCATCGTATGAATGCCATGCCGATGGAACAGCGCGTAGACATGGCCCTGACACCTAAAGCTCTGAATGCTA CCATCGCTGAGAAAGCTGGCCTTCCGGGCAAAAAGGTTATTTGGTCAGATGGACCTTCTGGCGATATTTACTATGATAAGGGCC AGGCGGAAATCGCGGCTACCCCTTCTCCGTCGGGACCACCTGAGAGCTGGAGTTTGATCCAGGAAGCTCGCGCGTCATTTTAC AACCCATGGATCTCCATGGGATACGGATCGCCGTGTGCCTATCCTGTTTTGGCGCAAAGGTATGCAGCATTTCGAACAACCCTT AGGAGTAGAGACTGTTGATATTTTGCCCTCCTTGGCTGCACTTATTAAGCTTCCTGTTCCTAAGGATCAGATCGACGGCCGCTG CAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGT GTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCC CTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTC TTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCG AGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGG GCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCA AGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCG TGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCCAACGAGAAGCGCGATCACATGGTCCT GCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAATAATGAGGATCCCGGGAATTCTCGA AAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGGCCTCTAAACGGGTCTTG AGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAAGCTTGGCACTGGCCGACCGGGGTCGAGCACTGACTCGCTGCGCTC GGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGA AAGAACATGTGAGCAAAAAGGCCAGCAAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCC CCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCC CTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTG GCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCC CGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGCTAAGACACGACTTATCGCCACTGGCAG CAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTAC ACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAA CAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGAAGAACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTG ATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACAGATCCGGGATTTTGGTCATGAGATTATCAAAAAGGATCTT AATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATA CGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTAATCAGCAATAAA CTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTG GTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCT TCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGT CATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTG CTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGG GCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTT ACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAGGGAATAAGGGCGACACGGAAATGTTG AATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTA GAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGT

**Figure S12**. Protein sequence of SpAP-(10mer linker)-eGFP.

MQSPAPAAAPAPAARSIAATPPKLIVAISVDQFSADLFSEYRQYYTGGLKRLTSEGAVFPRGYQ SHAATETCPGHSTILTGSRPSRTGIIANNWFDLDAKREDKNLYCAEDESQPGSSSDKYEASPLH LKVPTLGGRMKAANPATRVVSVAGKDRAAIMMGGATADQVWWLGGPQGYVSYKGVAPTPLV TQVNQAFAQRLAQPNPGFELPAQCVSKDFPVQAGNRTVGTGRFARDAGDYKGFRISPEQDA MTLAFAAAAIENMQLGKQAQTDIISIGLSATDYVGHTFGTEGTESCIQVDRLDTELGAFFDKLDK DGIDYVVVLTADHGGHDLPERHRMNAMPMEQRVDMALTPKALNATIAEKAGLPGKKVIWSDG PSGDIYYDKGLTAAQRARVETEALKYLRAHPQVQTVFTKAEIAATPSPSGPPESWSLIQEARAS FYPSRSGDLLLLLKPRVMSIPEQAVMGSVATHGSPWDTDRRVPILFWRKGMQHFEQPLGVET VDILPSLAALIKLPVPKDQIDGRCLDLVAGKDDSCAGQGGGSGGGGSGMVSKGEELFTGVVPIL VELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHM KQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLE YNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSA LSKDPNEKRDHMVLLEFVTAAGITLGMDELYK

# **Table S1**. Time and cost calculations for uPIC–M and conventional mutagenesis.All costs are listed in USD.

|                                         |                     | MUT-s                            | eq mutagenesi            | <u>s</u>                                              |                                                    |                                                          |                                                    |                                                                                                                                                                                                              |
|-----------------------------------------|---------------------|----------------------------------|--------------------------|-------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Materials:                              |                     |                                  |                          |                                                       |                                                    |                                                          |                                                    |                                                                                                                                                                                                              |
| item                                    | manufacturer        | quantity                         | units                    | total cost (USD)                                      | units per<br>reaction                              | reactions per<br>mutant                                  | cost per<br>mutant (USD)                           | Notes                                                                                                                                                                                                        |
| oligos                                  | Agilent             | 3750                             | number of oligos         | 2857                                                  | 1                                                  | 1                                                        | 0.76                                               | 7500 oligo array with 2X replicates, cost from agilent                                                                                                                                                       |
| KAPA HiFi HotStart 2X Master Mix        | Roche               | 6.25                             | mL                       | 678.56                                                | 0.0013                                             | 7.68                                                     | 1.04                                               | 384/50 reactions per desired mutant                                                                                                                                                                          |
| pA-Tn5                                  | Diagenode           | 15                               | uL                       | 585.9                                                 | 0.004                                              | 7.68                                                     | 1.20                                               | 1:50 dilution of pA-Tn5, 0.2 uL per reaction                                                                                                                                                                 |
| KAPA HIFI                               | Roche               | 250                              | U                        | 303.49                                                | 0.08                                               | 7.68                                                     | 0.75                                               |                                                                                                                                                                                                              |
| Nu Anin                                 | Roono               | 200                              | 0                        | 000.10                                                | 0.00                                               | 7.00                                                     | 0.70                                               | -6 replicate plates for dilutions prior to PCP and ToF                                                                                                                                                       |
| biorad hard shell                       | Biorad              | 50                               | each                     | 327                                                   | 0.0026                                             | 46.08                                                    | 0.78                                               | needed for every reaction, and 384/50 reactions per<br>desired mutant                                                                                                                                        |
| 96-head liquidator tips                 | Rainin              | 960                              | each                     | 125                                                   | 1                                                  | 30.72                                                    | 4.00                                               | ~4 plate transfers with the liquidator needed for every<br>reaction, and 384/50 reactions per desired mutant                                                                                                 |
|                                         |                     |                                  |                          |                                                       |                                                    |                                                          | 8.53                                               |                                                                                                                                                                                                              |
| Sequencing:                             |                     |                                  |                          | MUT-seq, a                                            | is above                                           | MUT-seq, liquida                                         | tor tip washing                                    |                                                                                                                                                                                                              |
|                                         |                     |                                  |                          |                                                       |                                                    |                                                          |                                                    |                                                                                                                                                                                                              |
| mutant library size                     | sequencing capacity | total sequencing<br>cost (USD)   | cost per mutant<br>(USD) | Sequencing and<br>materials cost<br>per mutant (USD): | total<br>sequencing<br>and materials<br>cost (USD) | Sequencing and<br>materials cost<br>per mutant<br>(USD): | total<br>sequencing<br>and materials<br>cost (USD) | Notes                                                                                                                                                                                                        |
| 1.50                                    | 1000000             | 600                              | 12.00                    | 20.52                                                 | 1026 74                                            | 16.52                                                    | 926 74                                             | 1M read miseq nano run, 2x250, for 50 mutants in 1x384                                                                                                                                                       |
| 1-30                                    | 1000000             | 800                              | 12.00                    | 20.55                                                 | 1020.74                                            | 7.00                                                     | 020.74                                             | well plate of barcodes<br>25M read miseq nano run, 2x300, for ~500 mutants in                                                                                                                                |
| 500                                     | 25000000            | 3300                             | 3.40                     | 11.93                                                 | 5967.36                                            | 7.93                                                     | 3967.36                                            | ~13x384 well plates                                                                                                                                                                                          |
| 5000                                    | 250000000           | 2250                             | 0.45                     | 8.98                                                  | 44923.58                                           | 4.98                                                     | 24923.58                                           | 250M read HiSeq 2x150 for 5000 mutants                                                                                                                                                                       |
| 20000                                   | -                   | -                                | -                        | 8.98                                                  | 179600.00                                          | 4.98                                                     | 99694.30                                           | Same unit cost as 5000                                                                                                                                                                                       |
|                                         |                     |                                  |                          |                                                       |                                                    |                                                          |                                                    |                                                                                                                                                                                                              |
| <u>Time and labor costs:</u><br>task    | time (days)         | mutant capacity                  | days for 1 mutant        | days for 50<br>mutants                                | days for 500<br>mutants                            | days for 5000<br>mutants                                 | days for<br>20000<br>mutants                       | Notes                                                                                                                                                                                                        |
| sublibrary pre-amp, purification, quike | 1                   | 1000                             | -                        | 1                                                     | 1                                                  | 5                                                        | 20                                                 |                                                                                                                                                                                                              |
| Colony picking and outgrowth            | 1                   | 500                              | -                        | 1                                                     | 1                                                  | 10                                                       | 40                                                 |                                                                                                                                                                                                              |
| Dilution and ORF PCR amplification      | 1                   | 500                              | -                        | 1                                                     | 1                                                  | 10                                                       | 40                                                 |                                                                                                                                                                                                              |
| DNA dilution and quantification         | . 1                 | 1000                             |                          | . 1                                                   | . 1                                                | 5                                                        | 20                                                 |                                                                                                                                                                                                              |
| The teamentation                        | . 1                 | 1000                             |                          |                                                       | . 1                                                | 5                                                        | 20                                                 |                                                                                                                                                                                                              |
| library QC                              | 1                   | 1000                             | -                        | 1                                                     | 1                                                  | 3                                                        | 5                                                  | Library QC will not scale linearly, as samples are pooled<br>at this stage, for 20000 mutants, with approximately 50<br>possible per 384 well plate, 400 plates and 400 pooled<br>samples to QC and sequence |
| sequencing and analysis                 | 2                   | 1000                             | -                        | 2                                                     | 2                                                  | 2                                                        | 2                                                  | Sequencing and analysis will not scale linearly, see<br>above                                                                                                                                                |
|                                         |                     | total days:                      | -                        | 8                                                     | 8                                                  | 40                                                       | 147                                                |                                                                                                                                                                                                              |
|                                         |                     | Labor costs (at 200<br>USD/day): | -                        | 1600                                                  | 1600                                               | 8000                                                     | 29400                                              | Labor costs calculated at a 50k USD annual salary                                                                                                                                                            |
|                                         |                     | Conven                           | tional mutagene          | sis                                                   |                                                    |                                                          |                                                    |                                                                                                                                                                                                              |
| Materials & sequencing:                 |                     |                                  |                          |                                                       |                                                    |                                                          |                                                    |                                                                                                                                                                                                              |
| item                                    | manufacturer        | quantity                         | units                    | total cost (USD)                                      | units per<br>reaction                              | reactions per<br>mutant                                  | cost per<br>mutant (USD)                           | Notes                                                                                                                                                                                                        |
| oligos                                  | IDT                 | 2                                | each                     | 5.73                                                  | 2.00                                               | 1                                                        | 5.73                                               |                                                                                                                                                                                                              |
| PFU Turbo polymerase                    | Agilent             | 1000                             | U                        | 791.7                                                 | 0.63                                               | 1                                                        | 0.49                                               |                                                                                                                                                                                                              |
| Chemical competent E. coli              | NEB                 | 1200                             | uL                       | 153                                                   | 12.50                                              | 1                                                        | 1.59                                               |                                                                                                                                                                                                              |
| Miniprep columns                        | Qiagen              | 1                                | each                     | 1                                                     | 1.00                                               | 1.5                                                      | 1.50                                               | Estimate 1.5 minipreps per desired mutant, to account for<br>the rate of picking colonies that do not have the correct<br>sequence                                                                           |
| sanger sequencing                       | -                   | 1                                | each                     | 2                                                     | 3.00                                               | 1.5                                                      | 9.00                                               | For a 1500 base pair ORF, with 1 sanger read for each 500 bp                                                                                                                                                 |
|                                         |                     |                                  |                          |                                                       |                                                    |                                                          | 18.32                                              |                                                                                                                                                                                                              |
| Time and labor costs:                   |                     |                                  |                          |                                                       |                                                    |                                                          |                                                    |                                                                                                                                                                                                              |
| task                                    | time (days)         | mutant capacity                  | days for 1 mutant        | days for 50<br>mutants                                | days for 500<br>mutants                            | days for 5000<br>mutants                                 | days for<br>20000<br>mutants                       | Notes                                                                                                                                                                                                        |
| quikchange, dpnl digestion              | 1                   | 100                              | -                        | 1                                                     | 5                                                  | 50                                                       | 200                                                | 1 reaction per mutant                                                                                                                                                                                        |
| transformation and plating              | 1                   | 100                              | -                        | 1                                                     | 5                                                  | 50                                                       | 200                                                | 1 transformation and plate per mutant                                                                                                                                                                        |
| colony picking and outgrowth            | 1                   | 100                              | -                        | 1                                                     | 5                                                  | 50                                                       | 200                                                |                                                                                                                                                                                                              |
| miniprep and sequence                   | 1                   | 100                              | -                        | 1                                                     | 5                                                  | 50                                                       | 200                                                |                                                                                                                                                                                                              |
|                                         |                     |                                  |                          |                                                       |                                                    |                                                          |                                                    |                                                                                                                                                                                                              |
|                                         |                     | total days:                      | -                        | 4                                                     | 20                                                 | 200                                                      | 800                                                | Conventional mutagenesis, without additional automated<br>handling, will scale approximately linearly                                                                                                        |
|                                         |                     | Labor costs (at 200<br>USD/day): | -                        | 800                                                   | 4000                                               | 40000                                                    | 160000                                             | Labor costs calculated at a 50k USD annual salary                                                                                                                                                            |
|                                         |                     |                                  |                          |                                                       |                                                    |                                                          |                                                    |                                                                                                                                                                                                              |

| sublibrary      | length<br>(nt) | primers<br>(forward, reverse)                             | SpAP positions<br>mutated | substitution                               |
|-----------------|----------------|-----------------------------------------------------------|---------------------------|--------------------------------------------|
| 1               | 200            | CGACTCACTATAGGGTCTAGAAATA,<br>CCTCCGGTGTAATATTGACG        | 2–41                      | non-val → val<br>val → ala                 |
| 2               | 200            | GTTTAGTGCAGACTTGTTCTCGGAGT,<br>CGTCCAAGTCGAACCAGTTATTAGCG | 42–89                     | non-val → val<br>val → ala                 |
| 3               | 197            | CTGACAGGATCACGTCCGTCAC,<br>GCAGGATTGGCGGCTTTCAT           | 90–137                    | non-val → val<br>val → ala                 |
| 4               | 199            | CTTAAAGGTACCCACCCTGGGG,<br>CTGATTGACCTGTGTTACAAGGGGAG     | 138–185                   | non-val → val<br>val → ala                 |
| 5               | 197            | GGGGTATGTTTCGTATAAGGGTGTAGC,<br>CTTTGTAGTCACCAGCATCACGGGC | 186–232                   | non-val → val<br>val → ala                 |
| 6               | 196            | CGGGAAATCGCACAGTGGGTAC,<br>GTGTGTCCCACGTAATCCGTAGC        | 233–279                   | non-val → val<br>val → ala                 |
| 7               | 197            | GCCCAGACCGATATTATTAGCATTGGAC,<br>GGCAGATCGTGTCCTCCATGATC  | 280–326                   | non-val → val<br>val → ala                 |
| 8               | 193            | CGTTTAGACACGGAGCTTGGTG,<br>CTTTCTCAGCGATGGTAGCATTCAG      | 327–356                   | non-ala → ala<br>ala → ala<br>(synonymous) |
| 9               | 193            | GACATGGCCCTGACACCTAAAGC,<br>CAGTCTGTACTTGGGGATGCGC        | 357–402                   | non-ala → ala<br>ala → ala<br>(synonymous) |
| 10              | 199            | CAACGTGCCCGTGTTGAAACC,<br>CACGAGGTTTCAATAAAAGTAACAGGTC    | 403–448                   | non-ala → ala<br>ala → ala<br>(synonymous) |
| 11              | 181            | CGTCATTTTACCCGTCGCGCTC,<br>CCTAAGGGTTGTTCGAAATGCTGC       | 449–491                   | non-ala → ala<br>ala → ala<br>(synonymous) |
| 12              | 134            | GCCGTGTGCCTATCCTGTTTTG,<br>GCCGTCGATCTGATCCTTAGGAAC       | 492–517                   | non-ala → ala<br>ala → ala<br>(synonymous) |
| 13 <sup>a</sup> | 139            | CCTTGGCTGCACTTATTAAGCTTCC,<br>TTGCTCACCATGCCACTGCCTC      | 518–542                   | non-ala → ala<br>ala → ala<br>(synonymous) |

| Table S2. Oligo arra | iv and window | design details fo | or SpAP | scanning | mutant library | / |
|----------------------|---------------|-------------------|---------|----------|----------------|---|
|                      |               |                   |         |          |                |   |

<sup>a</sup>This sublibrary also encodes a mutation for position 542, which is the first residue within a 10 amino acid linker between the SpAP and eGFP ORFs.

| sublibrary | primer<br>pool concentration<br>(nM) <sup>a</sup> |
|------------|---------------------------------------------------|
| 1          | 17.5                                              |
| 2          | 28.8                                              |
| 3          | 23.8                                              |
| 4          | 31.6                                              |
| 5          | 51.2                                              |
| 6          | 37.2                                              |
| 7          | 20.4                                              |
| 8          | 14.7                                              |
| 9          | 27.6                                              |
| 10         | 40.0                                              |
| 11         | 61.2                                              |
| 12         | 19.1                                              |
| 13         | 34.0                                              |

 Table S3. Concentration of purified sublibrary mutagenic primer pools

<sup>a</sup>Purified dsDNA samples were quantified by UV absorbance.

**Table S4**. Expected mutant yields from simulations of mutant sampling. Sequenced clones are reported for achieving unique mutant yields equivalent to 90% of total mutants.

| total<br>mutants | single<br>mutant<br>frequency | sequenced<br>clones<br>(median) <sup>a</sup> | sequenced<br>clones<br>(lower) <sup>b</sup> | sequenced<br>clones<br>(upper) <sup>c</sup> |
|------------------|-------------------------------|----------------------------------------------|---------------------------------------------|---------------------------------------------|
| 50               | 0.10                          | >500                                         | >500                                        | >500                                        |
| 50               | 0.25                          | 445                                          | 324                                         | >500                                        |
| 50               | 0.50                          | 218                                          | 162                                         | 473                                         |
| 50               | 0.75                          | 144                                          | 105                                         | 450                                         |
| 50               | 1.00                          | 106                                          | 85                                          | 330                                         |
| 500              | 0.10                          | >5000                                        | >5000                                       | >5000                                       |
| 500              | 0.25                          | 4726                                         | 4290                                        | >5000                                       |
| 500              | 0.50                          | 2322                                         | 2081                                        | 4793                                        |
| 500              | 0.75                          | 1538                                         | 1407                                        | 4702                                        |
| 500              | 1.00                          | 1147                                         | 1056                                        | 4309                                        |
| 5000             | 0.10                          | >50000                                       | >50000                                      | >50000                                      |
| 5000             | 0.25                          | 47703                                        | 46405                                       | 49957                                       |
| 5000             | 0.50                          | 23431                                        | 22589                                       | 49832                                       |
| 5000             | 0.75                          | 15503                                        | 15080                                       | 49446                                       |
| 5000             | 1.00                          | 11586                                        | 11296                                       | 46054                                       |

<sup>a</sup>The minimum number of sequenced clones required to obtain 90% yield of unique single mutants, as determined by the median unique mutant yield of 100 simulated picking experiments. <sup>b</sup>The lower bound was calculated as the minimum number of sequenced clones required to obtain a 90% yield of unique single mutants within the 95% confidence interval of unique mutant yields expected for this volume, from 100 simulated picking experiments.

<sup>c</sup>The upper bound was calculated as the maximum number of sequenced clones required to obtain a 90% yield of unique single mutants within the 95% confidence interval of unique mutant yields expected for this volume, from 100 simulated picking experiments.

| variant type <sup>a</sup>   | count (n=96) | fraction |
|-----------------------------|--------------|----------|
| WT                          | 11           | 0.11     |
| single                      | 60           | 0.63     |
| double                      | 4            | 0.04     |
| triple+                     | 1            | 0.01     |
| indels, errors <sup>b</sup> | 20           | 0.21     |

 Table S5.
 Variant composition of small-scale QuikChange-HT reactions.

<sup>a</sup>Clones were sequenced with one forward primer spanning the mutational region

<sup>b</sup>Includes indels, with or without the presence of intended codon substitution(s), and includes errors likely attributable to sanger sequencing

| sublibrary | primer pool<br>concentration<br>(nM) | colonies <sup>a</sup> | repeat<br>QuikChange <sup>b</sup> |
|------------|--------------------------------------|-----------------------|-----------------------------------|
| 1          | 17.5                                 | 76                    | Y                                 |
| 2          | 28.8                                 | 136                   | Ν                                 |
| 3          | 23.8                                 | 130                   | Ν                                 |
| 4          | 31.6                                 | 200                   | Ν                                 |
| 5          | 51.2                                 | 440                   | Ν                                 |
| 6          | 37.2                                 | 25                    | Y                                 |
| 7          | 20.4                                 | 26                    | Y                                 |
| 8          | 14.7                                 | 130                   | Ν                                 |
| 9          | 27.6                                 | 220                   | Ν                                 |
| 10         | 40.0                                 | 80                    | Ν                                 |
| 11         | 61.2                                 | 150                   | Ν                                 |
| 12         | 19.1                                 | 120                   | Ν                                 |
| 13         | 34.0                                 | 220                   | Ν                                 |

**Table S6**. Sublibrary transformation and colony picking results.

<sup>a</sup>Number of colonies obtained after QuikChange mutagenesis using normalized primer concentrations of 15 nM. Plating details: 1  $\mu$ L of reaction volume used to transform 20  $\mu$ L NEB-5 $\alpha$  cells, followed by addition of 200  $\mu$ L SOC, of which 100  $\mu$ L was plated on a 150 mm LB agar plate. Sublibraries not meeting colony yield requirements (400–500 colonies) were plated and/or transformed again at higher volume.

<sup>b</sup>QuikChange mutagenesis was repeated for these sublibraries using the maximum possible concentrations of stock primer pools allowed by reaction volumes.

| sublibrary | plate | sample<br>wells<br>total | sample<br>wells<br>assayed <sup>a</sup> | median <sup>b</sup> | mean <sup>b</sup> | standard<br>deviation <sup>b</sup> | tagmented library<br>concentration <sup>b, c</sup> |
|------------|-------|--------------------------|-----------------------------------------|---------------------|-------------------|------------------------------------|----------------------------------------------------|
| 1          | 1     | 384                      | 184                                     | 25                  | 34                | 24                                 | 17                                                 |
| 2          | 2     | 384                      | 184                                     | 61                  | 58                | 22                                 | 12                                                 |
| 3          | 3     | 384                      | 184                                     | 37                  | 39                | 17                                 | 14                                                 |
| 4          | 4     | 384                      | 184                                     | 28                  | 32                | 22                                 | 3                                                  |
| 5          | 5     | 384                      | 184                                     | 39                  | 40                | 26                                 | 12                                                 |
| 6          | 6     | 384                      | 184                                     | 11                  | 11                | 7                                  | 9                                                  |
| 7          | 7     | 384                      | 184                                     | 29                  | 32                | 21                                 | 4                                                  |
| 8          | 8     | 384                      | 368                                     | 1                   | 20                | 27                                 | 5                                                  |
| 9          | 9     | 384                      | 184                                     | 47                  | 47                | 23                                 | 3                                                  |
| 10         | 10    | 384                      | 184                                     | 57                  | 54                | 29                                 | 17                                                 |
| 11         | 11    | 384                      | 184                                     | 31                  | 34                | 21                                 | 3                                                  |
| 12         | 12    | 384                      | 184                                     | 16                  | 18                | 11                                 | 4                                                  |
| 13         | 13    | 384                      | 184                                     | 17                  | 21                | 14                                 | 3                                                  |

Table S7. Amplicon DNA and library concentration statistics.

 $^a\text{Number}$  of amplicon wells measured by fluorescence assay for DNA concentration  $^b\text{In}$  units of ng/µL

<sup>c</sup>Following tagmentation, barcoding/amplification PCR, and pooling of all 384 sample wells per plate, concentration represents total upon integration of all fragmentation peaks (see Figure 5)

### Table S8. Unique single mutant yields for the SpAP scanning library.

Total and fractional yields for the entire library (bold text) and within each mutational sublibrary are shown at read threshold values of 0, 1, 10, 100, and 1000. The read threshold value represents the minimum number of variant reads for each single mutant, and, the minimum ratio of var:WT reads (sum of forward and reverse reads in each case).

|            |          | 4-4-1 14        | yield at read thresholds: 0–1000 (fraction of total) |            |            |           |
|------------|----------|-----------------|------------------------------------------------------|------------|------------|-----------|
| sublibrary | residues | total positions | n/a                                                  | 10         | 100        | 1000      |
| all        | 2–542    | 541             | 507 (0.94)                                           | 498 (0.92) | 484 (0.89) | 60 (0.11) |
| 1          | 2–41     | 40              | 37 (0.93)                                            | 36 (0.9)   | 35 (0.88)  | 0 (0)     |
| 2          | 42–89    | 48              | 46 (0.96)                                            | 45 (0.94)  | 45 (0.94)  | 12 (0.25) |
| 3          | 90–137   | 48              | 47 (0.98)                                            | 46 (0.96)  | 45 (0.94)  | 7 (0.15)  |
| 4          | 138–185  | 48              | 45 (0.94)                                            | 41 (0.85)  | 36 (0.75)  | 2 (0.04)  |
| 5          | 186–232  | 47              | 46 (0.98)                                            | 46 (0.98)  | 45 (0.96)  | 6 (0.13)  |
| 6          | 233–279  | 47              | 44 (0.94)                                            | 44 (0.94)  | 42 (0.89)  | 1 (0.02)  |
| 7          | 280–326  | 47              | 41 (0.87)                                            | 40 (0.85)  | 40 (0.85)  | 3 (0.06)  |
| 8          | 327–356  | 30              | 27 (0.9)                                             | 26 (0.87)  | 26 (0.87)  | 4 (0.13)  |
| 9          | 357–402  | 46              | 40 (0.87)                                            | 40 (0.87)  | 38 (0.83)  | 1 (0.02)  |
| 10         | 403–448  | 46              | 43 (0.93)                                            | 43 (0.93)  | 42 (0.91)  | 8 (0.17)  |
| 11         | 449–491  | 43              | 42 (0.98)                                            | 42 (0.98)  | 42 (0.98)  | 16 (0.37) |
| 12         | 492–517  | 26              | 25 (0.96)                                            | 25 (0.96)  | 24 (0.92)  | 0 (0)     |
| 13         | 518–542  | 25              | 24 (0.96)                                            | 24 (0.96)  | 24 (0.96)  | 0 (0)     |

| sublibrary | total<br>barcodes | single mutant<br>frequency | total<br>positions | observed<br>positions <sup>a</sup> | expected positions,<br>median (95% Cl) <sup>b</sup> |
|------------|-------------------|----------------------------|--------------------|------------------------------------|-----------------------------------------------------|
| 1          | 318               | 0.55                       | 40                 | 37                                 | 40 (38–40)                                          |
| 2          | 274               | 0.54                       | 48                 | 46                                 | 46 (43–48)                                          |
| 3          | 298               | 0.54                       | 48                 | 47                                 | 46 (43–48)                                          |
| 4          | 247               | 0.53                       | 48                 | 45                                 | 45 (41–48)                                          |
| 5          | 315               | 0.54                       | 47                 | 46                                 | 46 (43–47)                                          |
| 6          | 264               | 0.52                       | 47                 | 44                                 | 45 (41–47)                                          |
| 7          | 241               | 0.56                       | 47                 | 41                                 | 45 (41–47)                                          |
| 8          | 146               | 0.62                       | 30                 | 27                                 | 29 (26–30)                                          |
| 9          | 260               | 0.55                       | 46                 | 40                                 | 44 (41–46)                                          |
| 10         | 352               | 0.58                       | 46                 | 43                                 | 46 (44–46)                                          |
| 11         | 329               | 0.68                       | 43                 | 42                                 | 43 (41–43)                                          |
| 12         | 216               | 0.56                       | 26                 | 25                                 | 26 (25–26)                                          |
| 13         | 270               | 0.59                       | 25                 | 24                                 | 25 (24–25)                                          |

**Table S9**. Comparison of uPIC–M performance with simulated picking experiments, per sublibrary.

<sup>a</sup>Number of unique mutants obtained for sublibrary. Sublibraries not meeting expected yields (based on the 95% confidence interval) are in bold red text.

<sup>b</sup>Predicted number of unique mutants given the observed single mutant frequency and number of clones sampled for plate, reported as the median of 1000 simulated sampling events.

 Table S10. Oligo array price summary.

| array size<br>(unique oligos) | array cost<br>(USD) | cost per oligo<br>(USD) <sup>a</sup> |
|-------------------------------|---------------------|--------------------------------------|
| 7.5 x 10 <sup>3</sup>         | 2,857               | 0.38                                 |
| 1.5 x 10 <sup>4</sup>         | 5,714               | 0.38                                 |
| 6.0 x 10 <sup>4</sup>         | 8,435               | 0.14                                 |
| 1.0 x 10⁵                     | 10,856              | 0.11                                 |
| 2.44 x 10 <sup>5</sup>        | 23,883              | 0.10                                 |

<sup>a</sup>Oligo array price summary (academic pricing, obtained 01/2021 from Agilent Technologies, personal communication). Prices are provided for arrays containing oligos of length 191–210 nt.