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SUMMARY

High-throughputmethodologieshaveenabled routine
generationofRNA target sets andsequencemotifs for
RNA-bindingproteins (RBPs).Nevertheless, quantita-
tive approaches are needed to capture the landscape
ofRNA-RBP interactions responsible for cellular regu-
lation.Wehaveused theRNA-MaPplatformtodirectly
measure equilibrium binding for thousands of de-
signed RNAs and to construct a predictive model for
RNA recognition by the human Pumilio proteins
PUM1 and PUM2. Despite prior findings of linear
sequence motifs, our measurements revealed wide-
spread residue flipping and instances of positional
coupling. Application of our thermodynamic model
topublished in vivocrosslinkingdata revealsquantita-
tiveagreementbetweenpredictedaffinitiesand in vivo
occupancies. Our analyses suggest a thermodynami-
cally driven, continuous Pumilio-binding landscape
that is negligibly affected by RNA structure or kinetic
factors, such as displacement by ribosomes. This
workprovides aquantitative foundation for dissecting
thecellular behavior ofRBPs andcellular features that
impact their occupancies.

INTRODUCTION

A grand challenge in biology is to understand, predict, and ulti-

mately control gene expression programs that allow cells to
966 Molecular Cell 74, 966–981, June 6, 2019 ª 2019 Published by E
function. RNA processing is central to regulation of gene expres-

sion, and each processing step, from splicing and end-process-

ing to translation and decay, is regulated by a suite of RNA-bind-

ing proteins (RBPs), which constitute >5% of the eukaryotic

proteome (Mitchell and Parker, 2014; M€uller-McNicoll and Neu-

gebauer, 2013; Singh et al., 2015). By binding specific sequence

or structure elements, RBPs can provide coordinated regulation

of sets of functionally related RNAs, as shown, for example, for

iron regulatory proteins, PUF (Pumilio and FBF) proteins, and

the Nova RBP (Gerber et al., 2004; Keene and Tenenbaum,

2002; Rouault, 2006; Ule et al., 2003).

Given the central importance of RBPs, defining and predicting

RBP interactions has been a major research focus, and tran-

scriptome-wide RNA target sets have been identified for hun-

dreds of RBPs, facilitating elucidation of RBP roles in regulatory

processes (e.g., Darnell, 2010; Dominguez et al., 2018; Gerber

et al., 2004; Hogan et al., 2008; Ray et al., 2013; Ule et al.,

2003;Wheeler et al., 2018; Xue et al., 2009).While the RNA target

databases provide immense value, several critical limitations to

our current knowledge remain.

First, RBP targets are commonly defined in a binary manner,

with RNA molecules considered either ‘‘targets’’ or ‘‘non-tar-

gets’’ of a given RBP. However, binding is a continuum, deter-

mined by RBP affinities, RBP and target concentrations, and

other cellular factors. Therefore, quantitative affinity measure-

ments are needed to define and predict RBP binding occu-

pancies across the RNA sequences present in a cell—i.e., the

RBP binding landscape—and the subsequent regulation. A sec-

ond limitation is that most current approaches are optimized for

identifying RBP targets rather than for quantitative determination

of RBP affinities or occupancies. Third, current models of RBP

specificity are limited to short, linear sequence logos and motifs,
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which assume energetic additivity (Schneider and Stephens,

1990; Stormo, 2000). Yet, the accuracy of such models remains

to be quantitatively and comprehensively tested.

The above limitations and the importance of regulation byRBPs

have sparked a growing interest in developing quantitative

genomic-scale approaches for measuring RBP-RNA interac-

tions and affinities. Methods such as MITOMI (mechanically

induced trapping of molecular interactions), HiTS-EQ (high-

throughput sequencing equilibrium), HiTS-RAP (high-throughput

sequencing–RNA affinity profiling), RNA Bind-n-Seq, and RNA-

MaP (RNA on a massively parallel array) can provide equilibrium

binding constants or apparent affinities (Buenrostro et al., 2014;

Jain et al., 2017; Jankowsky and Harris, 2017; Lambert et al.,

2014; Martin et al., 2012; Tome et al., 2014). Of these, RNA-MaP

and HiTS-RAP, two related techniques that utilize a modified

sequencing platform and an array of �105 unique immobilized

RNA species, eliminate an intermediate capture step that can alter

binding occupancies, thereby allowing highly accurate direct ther-

modynamic and kinetic binding measurements via fluorescence

readout (Buenrostro et al., 2014; Tome et al., 2014 and vide infra).

Recent studies have demonstrated the utility of RNA-MaP for sys-

tematic investigation of RNA-protein and RNA-RNA interactions

and for generation of quantitative thermodynamic models (Buen-

rostro et al., 2014; Denny et al., 2018; She et al., 2017).

We used the RNA-MaP platform to interrogate the sequence

preferences of the human PUF family proteins PUM1 and

PUM2 across a diverse designed RNA library. PUF family pro-

teins (Figure 1A) are universal in eukaryotes and have been

implicated in regulation of mRNA turnover, transport, transla-

tion, and localization; in mammals, PUF proteins play important

roles in brain and germline development, regulation of innate

immunity, and other processes (Goldstrohm et al., 2018; Miller

and Olivas, 2011). Extensive prior biochemical, structural,

evolutionary, and in vivo studies of PUF proteins provide a

powerful starting point for our quantitative and systematic

dissection of specificity (Figure S1A and references therein)

and allow us to pose specific biological, engineering, and bio-

physical questions.

PUF proteins have amodular structure of eight conserved tan-

dem repeats that recognize RNA in a sequence-specific manner

(Figure 1A), and this modularity provides a best-case scenario

for building a simple predictive thermodynamic binding model

(Wang et al., 2002). However, we show that the simplest, ener-

getically additive model breaks down and that tight-binding

RNA sequences exist that are not represented by previously

defined motifs. Our large, quantitative RNA-MaP dataset

enabled the generation of a predictive model for PUM1 and

PUM2 binding that includes residue flipping and coupling terms.

The model can also be applied to an engineered PUM1 variant,

after changing a single parameter to account for the local spec-

ificity change. Remarkably, our in-vitro-derived binding model

quantitatively explains median in vivo occupancies in prior

PUM2 crosslinking data, demonstrating that RNA binding sites

in vivo exhibit, on average, thermodynamically driven occu-

pancies (Van Nostrand et al., 2016). Further analysis indicates

that predicted RNA secondary structures do not lead to

decreased PUM2 occupancy in vivo, suggesting that these

structures are strongly disfavored in cells. Our thermodynamic
model provides a quantitative foundation for dissecting the

cellular behavior of RBPs and represents a step toward a quan-

titative and predictive understanding of the complex networks of

RBP-RNA interactions and their regulatory consequences.

RESULTS

Library Design
Starting with the PUM2 consensus motif, which has been deter-

mined by pull-down, cross-linking, and in vitro selection experi-

ments (Figures 1A and S1A), we designed an oligonucleotide

library to systematically address the factors that determine

binding specificity (Figure S1B). A designed (versus randomized)

library allowed us to maximize the information content by

leveraging prior specificity information. We introduced single

and multiple mutations into the PUM2 consensus site, focusing

on sequence variants outside the UGUA core to avoid prepon-

derance of non-binders (Figure S1B). We also varied the flanking

sequences and included insertions to test the potential for

noncontiguous binding sites; finally, we included variants of

sequence motifs of related PUF proteins to provide additional

sequence variation for testing PUM2 binding models (Fig-

ure S1B). To control for structural and context effects, each

sequence variant was embedded in two to four scaffolds

(Figure 1B).

Massively Parallel Measurements of PUM2-Binding
Affinities
Using RNA-MaP, we determined PUM2 protein binding affinities

for >20,000 distinct RNAs, and we report on >5,000 herein; se-

quences designed to address distinct questions will be reported

separately. The DNA library was sequenced on an Illumina

MiSeq flow cell, followed by in situ transcription in a custom-built

imaging and fluidics setup (Figure 1C; Buenrostro et al., 2014;

She et al., 2017). RNA transcripts were immobilized by stalling

the RNA polymerase at the end of the DNA template, and

RNA-protein association was measured by equilibrating the

RNAwith increasing concentrations of fluorescently labeled pro-

tein and by imaging binding to each cluster (comprising �1,000

copies of an RNA variant) (Buenrostro et al., 2014) (Figure 1C).

The resulting binding curves were used to obtain the dissociation

constant (KD) and the corresponding DG value ( = RTlnKD) of the

protein for each RNA variant.

Figure 1D shows representative binding curves for a consensus

sequence (UGUAUAUA, ‘‘WT’’) and a mutated sequence

(UGUAGCGC, ‘‘mut’’) that exhibit divergent affinities (KD =

0.17 nM and >340 nM, respectively). For most protein concentra-

tions, protein binding to the consensus sequence followed a

canonical binding curve (Figure 1D, WT). At the highest protein

concentrations, modest additional increase in fluorescence was

observed only for sequences that significantly bound PUM2.

This signal was well fit by a model in which a second PUM2

weakly binds to the RNA/PUM2 complex (Figure 1D, WT versus

mut), and was accounted for by including a nonspecific binding

term (STARMethods), which led to somewhat greater uncertainty

in KD values for weakly bound RNAs (Figure S1C).

Because our RNA array contained multiple clusters for each

sequence variant, numerous binding curves were determined
Molecular Cell 74, 966–981, June 6, 2019 967



CA

B

E

D

Figure 1. Quantitative High-Throughput Measurements of RNA Binding to PUM2

(A) Top: crystal structure of the RNA-binding domain of human PUM2 bound to UGUAAAUA RNA (PDB: 3Q0Q; Lu and Hall, 2011). For simplicity, the eight RNA-

binding sites (R1– R8) are numbered in the 50 to 30 order of bound RNA residues, the reverse of the order in protein primary sequence. Center: representative

PUM2 sequence motif (based on Hafner et al., 2010). Bottom: schematic representation of PUM2 residues involved in base-specific interactions (Wang

et al., 2002).

(B) Scaffolds for studying RNA sequence specificity. Yellow circles indicate the variable region (see Figure S1B).

(C) Left: schematic representation of an RNA-MaP experiment (Buenrostro et al., 2014). Right: representative images of a subset of RNA clusters after incubation

with increasing PUM2 concentrations. Asterisk at 58.4 nM indicates adjusted contrast relative to other images, due to increased background fluorescence.

(D) Representative binding curves for the consensus sequence (UGUAUAUA, S2b scaffold) and amutated sequence (UGUAGCGC, S1a scaffold). The number of

clusters containing the indicated sequence (n) is noted. Circles indicate the fluorescence in the protein channel normalized by the fluorescence in the RNA

channel. Medians and 95%confidence intervals (CIs) across the clusters are shown. Blue lines indicate the fits to the binding model, which includes a nonspecific

term for PUM2 binding to the PUM2-RNA complex, and the gray area indicates the 95%CI of the fit (KD(consensus) = 0.17 nM, CI95% = (0.10; 0.35); KD(mutant) >

340 nM, corresponding to the upper limit for binding affinities that could be confidently distinguished from background).

(E) Comparison of technical replicates performed on two different flow cells. Data with at least five clusters per experiment and with DG error less than 1 kcal/mol

(95% CI) are shown. Transparent tiles correspond to DG values greater than reliably distinguishable from background (STAR Methods); n corresponds to the

number of variants within the high-confidence affinity range, with the total number indicated in parentheses. The black dashed line indicates a slope of 1, and the

red line is offset by themean difference between replicates 1 and 2 (0.32 kcal/mol) that accounts for small differences in protein activity and/or dilution. The RMSE

value was calculated after accounting for this offset (RMSE = 0.42 kcal/mol without accounting for the offset).

See also Figure S1.
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in parallel for each construct. The median number of indepen-

dent clusters per sequence variant was 23 and 42 in experiment

replicate 1 and 2, respectively. Molecular variants were included

in downstream analysis when measured in at least five clusters

per experiment (Figure S1C), with additional quality filters

described in STAR Methods. Independent binding experiments

using distinct RNA chips indicated quantitative agreement

(R2 = 0.95; Figure 1E), with average reproducibility within less

than 2-fold (RMSE = 0.26 kcal/mol) after accounting for a small

systematic shift.

Dissecting and Defining PUM2 Specificity
PUM2 and related Puf3-type PUF proteins appear to recognize

RNA in a modular fashion, with each base contacted by one of

the eight PUF repeats (Figure 1A; Wang et al., 2002). Thus, inde-

pendent energetic contributions might be expected from

consecutive RNA bases bound at each of the eight PUF repeats,

as assumed in motif descriptions (Schneider and Stephens,

1990; Stormo, 2000). In this section, we test this and other ther-

modynamic models.

Comprehensive Analysis of Single-Mutant Variants

We first assessed the binding of all single mutants of the 8-mer

consensus UGUAUAUA in two to four scaffolds (Figure 2A). At

all positions, we see the strongest binding for the consensus res-

idue (circled), with very low discrimination at position 5, consis-

tent with prior results (Dominguez et al., 2018; Galgano et al.,

2008; Hafner et al., 2010; Lu and Hall, 2011).

Surprisingly, while the effects of single mutations generally

agreed across scaffolds, the spread of deviations was consider-

ably greater than expected from error (Figure 2B; 25�C,
‘‘Observed’’ versus dashed line; Figure S2A). Significant devia-

tions between scaffolds occurred in 13 of the 25 sequence var-

iants, at a 10% false discovery rate (FDR; Figure 2A, ‘‘*’’). We

considered several potential origins for how scaffolds might in-

fluence single mutant effects.

First, we assessed if RNA secondary structure might limit

PUM2 access to its site (Figure 2C) to differing extents among

scaffolds. If structure affected binding, the differences between

scaffolds should decrease at 37�C. Indeed, smaller differences

were observed at this higher temperature (Figures 2B and

S2A), with only 2 of the 25 sequence variants exhibiting signifi-

cant deviations between scaffolds (Figure S2C). Accounting for

structure effects with stabilities predicted by Vienna RNAfold

(Lorenz et al., 2011) also considerably reduced the between-

scaffold deviations (Figures 2B and 2D), with only 5 of the initial

13 variants exhibiting significant inter-scaffold deviations at

25�C and none at 37�C (asterisks in Figure 2A versus Figures

2D and S2C). Thus, RNA secondary structure can account for

most inter-scaffold variation.

We next investigated whether scaffold differences were asso-

ciated with alternative binding registers, which would diminish

the observed mutational penalty (Figure S2D). We calculated

predicted binding affinities in all possible binding registers

(scaffold + designed binding site) using amodel that assumes in-

dependent effects of individual mutations. 18 of the 61 variants in

Figures 2A and 2D had an alternative register with a predicted KD

within 5-fold of the measured value (Table S1). For the 2C

mutant, three of the four scaffolds have alternative registers
with affinities matching the observed values (Figure S2E). Thus,

in this case the seeming outlier (scaffold S1b) gives the most

accurate mutant penalty, underscoring the value of multiple

scaffolds and the importance of accounting for alternative bind-

ing sites.

Finally, we assessedwhether scaffold variation was caused by

sequence preferences outside the canonical PUM2 8-mer site.

The library included a set of constructs that varied the flanking

sequence two bases upstream (�2, �1) and downstream

(+1, +2) of the common consensus sequence (n = 209 across

four scaffolds; Figure S2F). We found modest effects at

position +1, with G(+1) bound most tightly (Figure S2F), with no

significant effects at other flanking positions. The G(+1) effect

was confirmed in gel shift experiments (Figure S2G). However,

since none of our scaffolds contained a G at this position, flank-

ing effects did not impact the observed differences of single

mutant measurements between scaffolds.

The above insights enabled us to determine high-confidence

single mutant effects for all positions, using values corrected

for secondary structure stability (Figure S2D) and using only

sequence variants without alternative binding registers. We

additionally took advantage of the observation that substituting

the uridine at position 5 with A or C residues did not affect the

binding affinity (Figure 2D (Lu and Hall, 2011)) and that none of

the single mutants in the 5A or 5C backgrounds had stable pre-

dicted alternative registers (Figure S3A). Figure 2E summarizes

the median single mutant effects across scaffolds and across

5A/C/U backgrounds. We observed excellent agreement be-

tween the effects derived from 25�C and 37�C data, with a con-

stant destabilization of binding by (20 ± 10)-fold at the higher

temperature (Figures S3A–S3E). RNA array measurements also

agreed with gel-shift measurements of 14 single mutants (Fig-

ures 2F and S3F).

Testing an Additive Model for PUM2 Specificity

If binding of RNA residues by consecutive PUF repeats contrib-

uted independently to PUM2 affinity, then the affinities for any

RNA sequence ought to be predicted from adding the measured

single mutant penalties (‘‘additive consecutive model’’; Fig-

ure 3A, top). To test this model, we calculated the predicted

affinities for our entire library using 36 terms, one for each

residue at each of the 9 recognition sites (8 canonical PUF re-

peats and the additional G9 site), determined from our single

mutant data (Figure 2E; Table S2). In the predictions, we ac-

counted for all possible binding registers by calculating the

ensemble affinity across all possible 9mers (STAR Methods).

We then compared the predicted and measured affinities for

RNAs predicted to contain little or no structure (DDGfold >

�0.5 kcal/mol; n = 5,206). This set included RNAs with mutations

or insertions throughout the PUM2 consensus sequence, varia-

tion in flanking sequence, and variations of consensus motifs of

other PUF proteins (Figure S1B).

While the predicted and observed binding energies strongly

correlated (R2 = 0.73), 27% of the observed values deviated

from predictions by >1.0 kcal/mol, well beyond our experimental

error of 0.14 kcal/mol (Figure 3A). Furthermore, the vast majority

of outliers bound tighter than predicted (Figure S4A). We there-

fore explored additional features that might lead to tighter-

than-predicted PUM2 binding.
Molecular Cell 74, 966–981, June 6, 2019 969
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Figure 2. Analysis of Single-Mutant Variant

Binding to PUM2

(A) Top: color code for the scaffolds in Figure 1B;

the arrow points to affinities for each position 1

sequence variant. Bottom: KD values of PUM2 for

single mutants at each position of the UGUAUAUA

consensus. Bars indicate weighted means of two

replicate measurements and error bars indicate

weighted replicate errors. The dashed line in-

dicates the average affinity for the consensus

sequence across the four scaffolds, and the

consensus residues are circled. Asterisks indicate

variants with significant differences between scaf-

folds (10% FDR).

(B) Scaffold variance before and after accounting

for RNA secondary structure and after excluding

sequences with predicted structure. The bars

indicate standard deviations of the distribution of

differences between each measured value (part A)

and the scaffold mean for the respective sequence

variant; see also Figure S2A and STAR Methods.

Dashed lines indicate the standard deviation of

measurement error. The experimental standard

deviation was higher at 37�C than 25�C because of

weaker binding and the absence of an independent

duplicate experiment.

(C) Model for RNA structure effects on PUM2

binding. Occluded RNA molecules increase the

observed dissociation constant (weaken binding)

by stabilizing the unbound state (see also Fig-

ure S2B and STAR Methods).

(D) Single-mutant affinities after accounting for

structure effects predicted by RNAfold (solid bars;

Lorenz et al., 2011); the transparent region in-

dicates the structure correction. Error bars indicate

weighted replicate errors. Asterisks indicate vari-

ants with significant scaffold differences after ac-

counting for structure effects.

(E)Median effects of each singlemutation (residues

1–8) across scaffolds and across 5A/C/U back-

grounds at 25�C, after excluding variants

with alternative binding registers and after ac-

counting for structure. Error bars indicate 95%

CIs of the median. Mutational effects were

calculated relative to the weighted mean affinity for

the UGUA[A/C/U]AUA consensus across scaf-

folds. Position 9 specificity was derived as shown

in Figure S2F and the mutational effect

was calculated relative to the most tightly bound

residue (G).

(F) Comparison of single-mutant affinities measured by RNA-MaP (Figure 2E) and by gel shift. 1C, purple; 2A, yellow; 2C, green; 3A, white; 3G, red; 4G, orange;

4U, blue; 5G, wheat; 7C, brown; 7G, magenta; 9A, lime; 9C, cyan; 9U, gray. The gel-shift values are averages and 95% CIs from two to four measurements.

See also Figures S2 and S3.
Residue Flipping Accounts for Most Deviations from the

Additive Consecutive Model

Several PUF proteins bind RNAs with residues ‘‘flipped out’’ to

yield longer, nonconsecutive binding motifs (Gupta et al., 2008;

Miller et al., 2008; Valley et al., 2012; Wang et al., 2009; Wilinski

et al., 2015). Human PUM1 protein, which has >90% sequence

identity to PUM2 in its RNA-binding domain, has two X-ray struc-

tures with bound RNA sequences each with one residue flipped

out (Gupta et al., 2008). To assess whether base flipping signifi-

cantly contributes to RNA binding to PUM2, we had included in

our library a set of RNAs with C insertions throughout the
970 Molecular Cell 74, 966–981, June 6, 2019
UGUAUAUA consensus sequence (Figure 3B), with C insertions

chosen, because none of the PUM2 repeats preferentially

bind C. In the absence of base flipping, a C insertion would cause

one or more mismatches in the PUM2 binding site, leading to a

large penalty (Figure 3C). Instead, at four positions within the

PUM2motif, insertion of the C residue had a much smaller effect

than predicted by the additive consecutive model, consistent

with base flipping (Figures 3C and 3D). For example, the insertion

between residues 5 and 6 leads to binding that is 3.4 kcal/mol

stronger than predicted (Figure 3C), and the 0.9 kcal/mol

observed destabilization relative to the consensus sequence



Figure 3. Development of a Predictive Model for PUM2 Specificity

(A) Top: schematic representation and test of the additive consecutive model. b is the position of bound base, and X is the base at position b. DDGX
b values

correspond to themeasured singlemutation penalties at 25�C (Figure 2E; Table S2). Bottom: predicted versus observedDDG values relative to the UGUAUAUAU

consensus sequence for all unstructured variants in the library. Predicted DDG values account for the ensemble of all possible registers along the RNA sequence

(STAR Methods). Transparent symbols indicate variants bound more weakly than the threshold for high-confidence affinity determination; these variants were

excluded from determining the R2 and RMSE values and from global fitting in parts E and F. Points are colored based on the deviation from predicted affinity,

divided by the uncertainty of the measurement (z =
��DGobs � DGpred

��=sDG; capped at z = 3 for visualization). The black dashed line is the unity line and the dashed

gray lines denote 1 kcal/mol deviation from the predicted value.

(B) C-insertion library for base-flipping analysis.

(C) Example of an insertion that gives binding tighter than predicted by the additive consecutive binding model and provides evidence for base flipping. X in-

dicates a mismatch. DDGpred corresponds to the prediction from additive consecutive model (Figure 3A). With flipping, DDGpred indicates the prediction ac-

counting for bound positions only, which is 0 as the consensus residues are in each site.

(D) Summary of observed and predicted DDG values for each of the C insertions in part B. Green box indicates positions at which the observed DDG values are

smaller than predicted, suggesting base flipping. Arrows indicate that the observed affinities are lower limits for base flipping penalties. Averages and standard

errors for library variants containing the consensus sequence with the indicated insertion and lacking stable alternative registers are shown (Table S3).

(E) Additive nonconsecutivemodel. Y indicates the residue(s) flipped at position f. Numbering of flipped residues is based on the flanking bound residues; 3/4–6/7.

The dashed orange outline indicates a cluster of outliers with residue coupling.

(F) Final model including binding, flipping, and coupling terms. c indicates the positions of coupled residues, and Z is the identity of coupled residues. Final model

parameters are provided in Table 1.

See also Figures S4–S6 and Tables S2, S3, S4, and S5.
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Figure 4. Thermodynamic Model for PUM2

Binding Integrating Binding Modes and

Registers

(A) An RNA sequence of length n can be bound in a

series of 9- to 11-mer registers (r), within which the

RNA residues are variably distributed between

bound and flipped positions. Representative

subsets of binding registers and base arrange-

ments are shown for each of the four binding

modes included in the model: consecutive, 1-nt,

and 2-nt flips (at a single position) and two flips at

different positions. The equations indicate inte-

gration of predicted DDG values for all possible

binding sites to obtain the final affinity. The DDG

values for predicting individual binding site con-

figurations are given in Table 1.DGWT is the affinity

for the consensus sequence.

(B) Schematic representation of a predictive

model of PUM2 occupancies on an mRNA target

(see STAR Methods).
suggests an energetic penalty for flipping a C residue at this po-

sition of 0.9 kcal/mol. Thus, our data suggest that PUM2 can

bind RNAs with flipped out residues in certain positions, and

we modeled this behavior in an extended ‘‘additive nonconsec-

utive model.’’

The additive nonconsecutive model combines independent

energetic contributions from each of the 9 bound residues with

the ability to flip up to two residues (Figure 3E, top). To determine

the associated energetic penalties, this model was fit to our

5206 measured binding affinities, accounting for all possible

binding modes and registers (STAR Methods; see Figure 4A).

The additive nonconsecutive model gave improved agreement

with the data, with the root mean square error (RMSE) reduced
972 Molecular Cell 74, 966–981, June 6, 2019
from 1.03 to 0.36 kcal/mol and R2

increased from 0.73 to 0.92 (Figure 3E

versus Figure 3A). This large improve-

ment is not a consequence of allowing

the single-mutant values to vary in

global fit, as a global fit to the additive

consecutive model with variable single-

mutant values gave considerably poorer

predictions (Figures S4B and S4C).

Despite the overall improvement ob-

served with the additive nonconsecutive

model, there remained a subset of signif-

icant outliers (Figure 3E) that led us to

carry out additional analyses for ener-

getic coupling.

Energetic Coupling between

Neighboring Residues

Inspection of the cluster of variants

that bound tighter than predicted even

after accounting for flipping (Figure 3E,

dashed outline) revealed an enrichment

for variants with a G mutation at position

7 accompanied by mutations at position

8, suggesting potential coupling between
these neighboring mutations. For an unbiased assessment of

coupling at all positions, we considered all double mutants of

the PUM2 consensus site, which revealed that coupling between

positions 7 and 8was the strongest, and deviations from additive

predictions at all other positionswere <0.5 kcal/mol (Figure S4D).

Further analysis revealed that (1) coupling between positions 7

and 8 occurred with G or C at position 7; (2) for 7G, coupling

occurred only when position 6 was the consensus residue (A)

and a pyrimidine was present at position 5 (Figure S4E), and

these variants fully explained the cluster of outliers observed in

Figure 3E (Figure S4E, top); and (3) for 7C, the deviations from

additivity were greatest when position 6 was mutated (not A)

(Figure S4F).



Table 1. Thermodynamic Parameter Values for the Additive Nonconsecutive Coupling Model

Term I DDGX
b (kcal/mol)

Bound Residue Position b =

X =

A C G U

1 3.08 2.91 3.04 0.00

2 1.93 3.14 0.00 3.14

3 2.39 2.49 2.92 0.00

4 0.00 1.92 1.71 1.46

5 �0.03 0.17 0.79 0.00

6 0.00 1.83 1.82 1.49

7 1.55 1.78 1.59 0.00

8 0.00 1.57 1.52 1.01

9 0.30 0.29 �0.07 0.00

Term II DDGY
f (kcal/mol)

Flipped Residue Position f =

Y =

A C G U NNa B

3/4 >2b 1.79 >1.5 1.41 >2.5 0

4/5 >2 >3 >2.5 >2.5 >2.5 0

5/6 1.22 1.05 1.57 0.81 2.18 0

6/7 >2 1.77 >2 2.02 2.04 0

Term III DDGZ
c (kcal/mol)c

Coupled Residue Positions c =

Z =

5 6 7 8 6 7 8 8 9

all otherC/U A G C/G/U C/G/U C C/G/U C/G/U X

5–8 �1.53 – – 0

6–8 – �0.91 – 0

8–9 – – � DDGX
9
d 0

a2-nt flip of any sequence.
b‘‘>’’ indicates a lower limit (see Figure S6A).
cCoupling terms are defined as combinations of residues that meet all of the indicated conditions at the indicated sets of positions. For example, the

coupling term DDG6--8
c has the value of �0.91 kcal/mol if position 7 residue is a C and position 6 and 8 residues are not A (C/G/U); for all other com-

binations of sequences, the value of the coupling term is 0.
dCoupling term indicates that the position 9 binding term (DDGX

9; ‘‘term I’’) is only implemented when position 8 is the consensus residue A.
We also observed small deviations from additivity at positions

8 and 9 (Figure S4D). Physically, an absence of stable binding in

the PUM2 site ‘‘8’’ would be expected to increase the entropic

penalty for forming the site ‘‘9’’ interaction and thus might

weaken or eliminate this interaction. Indeed, we found that the

modest stabilizing effect of 9G relative to other residues was

only present with the consensus A at position 8 (Figure S4G).

Figure 3F shows the global fit to our final model that includes

additive terms for bound and flipped residues and the coupling

terms described above (Table 1). For 99% of the data, this final

model predicted our observations to within 1 kcal/mol and it

gave a slight overall improvement relative to the additive

nonconsecutive model (Figure 3E versus Figure 3F).

Evaluating the Final PUM2-Binding Model

Control fits and analyses demonstrated that the fit model param-

eters were stable to variation in initial parameter values, data re-

sampling, and the use of different fitting methods (STAR

Methods). Training and testing sets gave essentially identical

R2 and RMSE values, suggesting that the model was not overfit.

Assessment of RMSE sensitivity to individually varying each
model parameter revealed that, as expected, the free energy

terms for the consensus residues were most highly constrained,

as these residues were present in the majority of the RNAs, while

penalties for mismatched bound residues were less well con-

strained (Figure S5A). Approximately half of the flipping terms

in the model were well constrained, while the other half provided

lower limits for the free energy penalties, generally because the

penalties were sufficiently high that either no binding or binding

in an alternative register was observed (Figure S6A). In addition,

the lack of specificity for the ‘‘bound’’ base at position 5 limited

our ability to distinguish flipping at position ‘‘4/5’’ versus position

‘‘5/6’’ (numbering of flipped residues is based on the flanking

bound residues; Figure 3E).

Implementation of the Predictive Model of RNA Binding

by PUM2

The thermodynamic model for PUM2 binding can be applied to

any RNA by calculating the ensemble free energy across each

of the possible binding modes (consecutive, one or two residues

flipped) and binding registers, as illustrated for a 15-nt RNA

example in Figure 4A. The model can be further extended to
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Figure 5. Comparison of RNA-Binding

Specificities of PUM2 and Wild-Type and

Engineered PUM1 Proteins

(A) Correlation between PUM1 and PUM2 affinities

across the library. The red line has a slope of 1 with

an offset of 1.07 kcal/mol, corresponding to

weaker observed binding for PUM1 than PUM2;

the RMSE value was calculated after accounting

for the constant offset.

(B) Predicting PUM1 binding with the PUM2-based

model. Inset shows the distribution of deviations

from predicted values.

(C) Schematic representation of the single amino-

acid change in repeat ‘‘R6’’ of engineered PUM1.

(D) Differences between the single mutant speci-

ficities of wild-type and mutant PUM1. Differences

between weighted means of single mutant pen-

alties across scaffolds in the UGUAUAUA back-

ground are shown, and the error bars indicate

propagated weighted errors. N.A. indicates lack of

detectable binding by mutant PUM1.

(E) Predicted mutant PUM1 affinities (based on the

PUM2 model) versus observed affinities; the

DDG values are relative to the UGUAUAUAU

consensus. Despite accurate predictions for

most variants, 18% of variants deviated by

>1 kcal/mol, consistent with altered specificity of

mutant PUM1.

(F) Predicted versus observed mutant PUM1 af-

finities with the altered 6U penalty.
predict PUM2 occupancies along larger, physiological RNAs, as

illustrated schematically for anmRNA target in Figure 4B, andwe

provide an algorithm for occupancy predictions (see STAR

Methods).

Evaluating Specificity across Human Pumilio Proteins
Human PUM1 shares 91% sequence identity and 97%

sequence similarity in its RNA-binding domain (RBD) with

PUM2, and all of the RNA-interacting amino acids are identical

between the two proteins. Prior studies revealed nearly identical

RNA sequence motifs and considerable overlap in apparent tar-

gets, highlighting the question of why humans retain two seem-

ingly redundant proteins (Figure S1A) (Goldstrohm et al., 2018).

To test potential quantitative differences in PUM1 and PUM2

sequence specificity and to assess if our PUM2-derived binding

model could be extended to predict PUM1 binding, we

compared PUM1 and PUM2 binding across our RNA sequence

library.

PUM1 and PUM2 binding showed high agreement, indistin-

guishable from the concordance between PUM2 replicates
974 Molecular Cell 74, 966–981, June 6, 2019
(Figure 5A versus Figure 1E). Therefore,

our model derived from PUM2 data can

also be used to predict PUM1 binding

(Figure 5B). The identical RNA sequence

specificities suggest that any functional

differences between PUM1 and PUM2

are fully determined by other factors,

such as differences in modification pat-

terns, protein interaction partners, or sub-
cellular localization (Goldstrohm et al., 2018; Kedde et al., 2010;

Thul et al., 2017).

Evaluating the Precision of Pumilio Engineering
The modular structure of PUF proteins has made them attractive

platforms for engineering new RNA specificities (Chen and Var-

ani, 2013; Lu et al., 2009). Given our observation of complexity

of the PUF protein specificity landscape that is not captured by

a simple linear motif, we aimed to comprehensively evaluate

the precision of PUF protein engineering using a previously de-

signed PUM1 mutant, in which specificity for position 6 in the

RNA was altered from A to U through a single amino-acid substi-

tution in repeat ‘‘R6’’ (Cheong and Hall, 2006) (Figure 5C).

Analysis of single-mutant penalties relative to wild-type PUM1

confirmed a change in mutant PUM1 specificity at position 6,

with no significant differences observed for other residues and

positions, supporting a local effect from the PUM1 mutation

(Figure 5D).

We next asked if our thermodynamic model could be applied

to the engineered PUM1 protein. Changing a single term in our



binding model to account for the altered 6U penalty for mutant

PUM1 (�0.32 kcal/mol instead of +1.49 kcal/mol) gave accurate

predictions across our library, with 99% of variant affinities pre-

dicted to within 1 kcal/mol (Figures 5E and 5F). Thus, our quan-

titative model can be readily modified and applied to new PUF

proteins.

Assessing the Thermodynamic Model for PUM2-RNA
Occupancies In Vivo

To assess the extent to which in vivo binding is driven thermody-

namically, we compared predictions from our thermodynamic

binding model to published in vivo enhanced UV crosslinking

and immunoprecipitation (eCLIP) measurements for PUM2

from the ENCODE project (Consortium, 2012; Van Nostrand

et al., 2016). Putative PUM2 binding sites within expressed

mRNAs were identified as sites with predicted binding affinities

within 4.0 kcal/mol (�1,000-fold) of the consensus sequence.

eCLIP signal was divided by the relative expression of its tran-

script and evaluated in bins of predicted affinity, because quan-

tification of individual RNA sites is currently limited by low

sequencing depths and may be further subject to experimental

biases (Darnell, 2010; Sugimoto et al., 2012; Wheeler et al.,

2018). Strikingly, we observed quantitative agreement between

relative affinities predicted by our thermodynamic model and

themedian eCLIP enrichment signal across the predicted affinity

bins (Figure 6A, points versus dashed line). Close agreement

was observed for predicted sites both with and without flipped

residues (Figure 6B). Thus, in vivo binding data are consistent

with thermodynamically driven occupancy, and the binding se-

quences and modes identified by RNA-MaP are bound, on

average, at the levels expected based on their affinities.

Because Pumilio proteins have generally been identified to act

via 30 UTRs (Goldstrohm et al., 2018), we wondered whether

there might be lower average occupancy in coding sequences

(CDSs) and in 50 UTRs (e.g., due to displacement of PUM2

fromCDS sites by translating ribosomes). Comparison of the oc-

cupancy around PUM2 sites in 30 UTRs and CDSs showed indis-

tinguishable eCLIP enrichments (Figure 6C; 50 UTR sites were

not included because of the small number of predicted sites in

this region), suggesting that inherent thermodynamic stability

of a site is the overarching driver of in vivo occupancy rather

than the location of the site within the mRNA.

We observed a strong enrichment of PUM2 consensus sites in

30 UTR sequences relative to CDS and 50 UTR regions, with

�90% of consensus sites located in 30 UTRs, despite 30 UTRs
constituting on average only 38% of the mRNA length (Figures

6D and 6E; Consortium, 2012). 30 UTR enrichment was evident,

though diminished, for sites with weaker predicted affinities,

suggesting that these sites may also play functional roles via

30 UTR binding.

In vitromeasurements indicated that RNA secondary structure

formation can strongly limit the accessibility of PUM2 binding

sites and thus decrease PUM2 binding (Figures 2C and 2D)

(Becker et al., 2019a). In contrast to the pronounced structure ef-

fects observed in vitro, comparisons of in vivo eCLIP signal

around consensus sites with varying predicted structure content

revealed no change in median occupancy for predicted struc-

tural stability of up to�4 kcal/mol (Figure 6F; 37�C). A rare subset
(<2%) of sites had very high predicted structure stability

(DDGfold > 8.6 kcal/mol) and showed slightly diminished eCLIP

signal, suggesting that highly stable structures may lead to

decreased binding. However, RNA structure effects on the

vast majority of PUM2 sites appear to be negligible in vivo.

DISCUSSION

RNA-protein interactions are integral to regulation of gene

expression (Singh et al., 2015). To define and predict the com-

plex networks of RNA-protein interactions, quantitative descrip-

tions of RNA-RBP thermodynamics are needed. Toward this

goal, we have built a predictive model for RNA binding by the hu-

man PUM1 and PUM2 proteins. This model, along with direct

thermodynamic binding measurements for thousands of RNAs,

provides testable predictions of in vivo RNA interactions and

yields biological and biophysical insights.

Applications toCellular Interactions andRNAProperties
Comparison of predictions from the thermodynamic binding

model to published in vivo cross-linking data (Van Nostrand

et al., 2016) supports the simple notion that thermodynamics is

a prime driver in determining RNA occupancy for PUM2 (Figures

6A and S7B). While it would be surprising if thermodynamic affin-

ities did not influence RNA binding in vivo, other models are

possible. For example, rapid Pumilio protein dissociation by

the action of RNA helicases would level occupancies for all sites

above a certain threshold affinity (Figure S7C), and translation by

ribosomes that displaces PUM2 proteins faster than equilibra-

tion of PUM2 binding would yield CDS occupancies lower than

30 UTR occupancies. However, a close correspondence be-

tween thermodynamic predictions and in vivo crosslinking pro-

vides evidence against these alternate models (Figures 6A and

6C). Ribosomes traverse CDS sites, and presumably displace

bound factors, approximately once every 10 s (�0.1 s�1; Hal-

stead et al., 2015; Schwanh€ausser et al., 2013). This rate sets

an upper limit for the equilibration time for PUM2 binding—it

must occur faster than ribosomal displacement for us to observe

no difference in occupancy in CDSs compared to 30 UTRs. This
rough lower limit estimate is similar to the rate constant for disso-

ciation of PUM2 from the consensus sequence in vitro (�0.1 s�1;

37�C; unpublished data), suggesting that indeed PUM2 dissoci-

ates from consensus sites on the timescale of translation, and

faster for nonconsensus sites.

Recent studies have suggested that RNA structure is destabi-

lized in the cellular milieu (Ding et al., 2014; Guo and Bartel, 2016;

Rouskin et al., 2014; Spitale et al., 2015). Using published in vivo

eCLIP data (Van Nostrand et al., 2016), we observed that binding

sites predicted to be minimally accessible (<0.1%; DDGfold a

4 kcal/mol) gave PUM2 enrichments essentially indistinguish-

able from sites predicted to lack structure (Figure 6F). These re-

sults provide independent support for structure disruption in vivo,

which could result from a high density of bound RBPs that

outcompete RNA structure formation and/or the action of RNA

chaperones. Moving forward, coupling in vitro thermodynamic

measurements with quantitative in vivo analysis will aid in deter-

mination of cellular factors responsible for destabilizing RNA

structure.
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Figure 6. Testing the Thermodynamic Model in Vivo

(A) Thermodynamic affinity predictions compared to eCLIP enrichment in K562 cells (Van Nostrand et al., 2016). Median eCLIP enrichments across sites within

bins of predicted relative affinities are shown, and error bars indicate 95%CIs on themedian. Only sites lacking adjacent UGUA-containing sites (within 100 nt) are

shown due to inflation of eCLIP signal observed in the presence of nearby sites (Figure S7A). Black dashed line indicates the predicted change in eCLIP signal with

increasing predicted DDG values, relative to the eCLIP signal in the lowest DDG bin. eCLIP (closed circles) and input (open circles) correspond to crosslinked

samples that were or were not treated with anti-PUM2 antibody, respectively (Van Nostrand et al., 2016). The gray dashed line indicates the eCLIP enrichment for

sites with predicted DDG values greater than 4.5 kcal/mol (expressed transcripts); since eCLIP signal and input were each normalized to this value, this expected

enrichment is equal to 1. Numbers of sites per bin range from 97 to 14,787 and are provided in Table S6.

(B) Median eCLIP enrichment and 95% CIs across bins of predicted DDG, using either the full thermodynamic model (left) or a model that does not take into

account flipped residues (right). Only bins with at least 25 sites are shown.

(C) Comparison of eCLIP enrichment for sites within 30 UTR (orange) or CDS (gray) regions of expressed genes in K562 cells. Medians and 95% CIs are shown.

Black and gray lines are as in A.

(D) Fractions of sites annotated as 30 UTR, CDS, or 50 UTR within bins of predicted DDG values.

(E) Fold difference (log2) of the observed fraction of sites with the given annotation (50 UTR, CDS, and 30 UTR) versus the expected fraction (based on randomly

selected sites).

(F) Median eCLIP enrichment of consensus sites across bins of predicted secondary structure stabilities for structures blocking the PUM2 consensus site

(Figure 2C; STAR Methods). Colors indicate the number of flanking nucleotides (nt) included in the stability calculations. Dashed line indicates the predicted

change in eCLIP signal for increasing secondary structure stability at 37�C. Medians and 95% CIs for bins with at least 20 sites are shown.

(G) Example of thermodynamic occupancy predictions for the 30 UTR region of the human cyclin-dependent kinase inhibitor 1bCDKN1BmRNA, a known target of

human Pumilio proteins (Kedde et al., 2010). The left axis indicates predicted relative occupancies with respect to the UGUAUAUAU consensus; the right axis

indicates predicted fractional occupancies (i.e., fraction of bound versus total CDKN1B mRNA) after accounting for cellular PUM2 and RNA abundances (see

STAR Methods).

(H) PUM2-binding landscape across the human transcriptome, predicted by our thermodynamic model using in vivo PUM2 and mRNA levels (see STAR

Methods). Bars indicate the number of bound PUM2molecules across RNAbinding sites with zero to eight nonconsensus residues without flipped residues (blue)

or with up to two flipped residues (green). The consensus was defined as UGUA[ACU]AUAN. See Table S6 for numbers of sites of each type.

See also Figure S7 and Table S6.
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Generalizability of the Thermodynamic Model and
Potential Improvements
The rational design of our RNA-MaP library ensured high

coverage of predicted binding sites; for example, despite

measuring only 4.2% of all possible 9mers, the fraction of pre-

dicted ‘‘binders’’ (9mers with DDGpred < 4.5 kcal/mol) in this li-

brary was 35%. Comparisons to published RNA Bind-n-Seq

(RBNS) data for human PUM1 (Consortium, 2012; Dominguez

et al., 2018) confirmed that the model performed indistinguish-

ably for sequences that were or were not represented in the

RNA-MaP library (R2: 0.74 versus 0.75; Figure S7D), supporting

generalizability. In the future, the model may be further improved

through more comprehensive measurements of neighboring

double and triple mutations, which may identify additional

weak coupling terms; additionally, greater sequence coverage

of insertions longer than 1 nt would allow full assessment of

the sequence dependence of flipping penalties. While we do

not expect these improvements to have major effects on the

overall accuracy, theymay lead to identification of additional sta-

ble binders.

An Algorithm for Predicting PUM1 and PUM2
Occupancies
The thermodynamic binding model, along with estimated in vivo

PUM1, PUM2, and RNA levels, allows prediction of PUM1 and

PUM2 occupancy across the entire transcriptome. We supply

a computational algorithm to carry out these predictions, and

depict the output of this tool for one transcript in Figure 6G.

The algorithm can be used to predict occupancies for individual

sites and RNAs and to design future tests for cellular factors that

might affect PUM1 and PUM2 binding.

Implications for Other RBPs
Despite the simple, modular structure of the PUM RNA-binding

domain, our data revealed considerable complexity in PUM1

and PUM2 interactions with RNA, due to base flipping, coupling,

and binding in multiple modes and registers. These features are

likely even more important for RBPs that lack a well-defined

modular architecture. In fact, the requirement for more sophisti-

cated models may explain the difficulty in obtaining sequence

motifs for many RBPs, and the apparent degeneracy and redun-

dancy of many of the hundreds of motifs that have been deter-

mined (e.g., Dominguez et al., 2018; Ray et al., 2013). Building

on these motifs as starting points for rational library design and

carrying out quantitative equilibrium measurements will be

essential for developing predictive models of RBP interactions

across all levels of RBP complexity.

Functional Implications
The connection between PUM2 occupancy and its functional ef-

fects on mRNA abundance remains to be fully explored. Recent

analysis of transcriptome-wide effects of PUM1 and PUM2

depletion showed that consensus sites located in 30 UTRs

were more likely to give significant regulation than CDS sites

(Bohn et al., 2018). Using our thermodynamic model to account

for all sites (including nonconsensus sites) within each mRNA re-

gion supports this conclusion: PUM2 occupancy across 30 UTR
sites was moderately predictive of mRNA upregulation in
response to PUM1 and PUM2 knockdown (Figure S7E; area un-

der the curve [AUC], 0.63), whereas PUM2occupancy across the

CDS or 50 UTR regions was less predictive (AUC = 0.57). As a

point of comparison, the eCLIP signal in the 30 UTR was similarly

predictive of regulation as thermodynamically predicted PUM2

occupancy (AUC = 0.63; Figure S7F). The difference between

functional outcomes from binding to 30 UTR versus non-30 UTR
sites, despite indistinguishable PUM2 binding occupancies

(Figure 6C), indicates the importance of additional cellular fac-

tors in determining the extent of PUM1- and PUM2-mediated

repression.

The model further allows certain mRNAs to be confidently

ruled out as direct PUM1 and PUM2 targets. In their study of

global effects of PUM1 and PUM2 depletion on mRNA abun-

dance, Bohn et al. observed a set of 300mRNAs that were signif-

icantly downregulated, indicating a noncanonical role of Pumilio

proteins in activating rather than repressing these targets (Bohn

et al., 2018). Our thermodynamic model predicts that these

mRNAs do not bind PUM1 and PUM2 significantly more than

unregulated RNAs, suggesting that their expression is not

controlled through direct interactions with Pumilio proteins.

These genes may instead be regulated by factors that are them-

selves repressed by PUM1 and PUM2 (Figure S7G).

Specificity and Cellular RNA-Protein-Binding
Landscapes
Determining quantitative RBP binding landscapes and how

these landscapes changewith changes in RBP and RNA expres-

sion levels is critical for a complete description of the RBP-RNA

networks. The shape of the binding landscape––i.e., RBP occu-

pancies across RNA sequences present in a cell––has implica-

tions for regulation, evolution, and engineering. We illustrate

some of these implications for PUM2.

The thermodynamic model predicts that less than a third of

cellular PUM2 is bound to consensus sites and that the majority

of the protein is distributed across nonconsensus sequences

(Figure 6H; STAR Methods)––a consequence of the large

excess of nonconsensus sites (Table S6) and the moderate

binding penalties associated with many mutations and inser-

tions (Table 1).

The varied, moderate nonconsensus residue penalties allow

for a smooth gradient of PUM2 binding occupancies (Figure 6A;

see also Figure 3F), and we speculate that this continuum of oc-

cupancies can be used to finely tune regulatory effects that

occur through PUM2 binding.

A less obvious influence of RBP specificity on regulation arises

because the binding to nonconsensus RNA sites reduces the

pool of protein available to bind to consensus sites. Because

of this titration effect and because of the much greater number

of potential binding sites than the number of PUM2 molecules

in cells, only a small fraction of each consensus site (UGUA

[ACU]AUAN) is predicted to be occupied by protein (<10%,

based on known amounts of cellular PUM2 and mRNA; STAR

Methods). Thus, even in the presence of total protein concentra-

tion in excess of the consensus affinity ([PUM2] = 10 nM versus

KD = 3 nM at 37�C), binding is decidedly subsaturating. This sub-

saturating binding renders per-site occupancies highly sensitive

to changes in PUM2 levels or affinity, much as observed for
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enzymes that operate in a subsaturating regime ([substrate]

�KM) to enable greater sensitivity to cellular changes in substrate

concentration (Berg and Stryer, 2002).

The near-continuous nature of PUM2 occupancies across

mRNA sequences would be expected to render the PUM2-bind-

ing landscape highly evolvable. The presence of a large number

of sites bound with moderate affinities, and the often-subtle ef-

fects of individual substitutions should allow evolution to both

tune regulation of existing sites as well as co-opt binding sites

for new regulation. Indeed, PUM2 orthologs throughout Eukarya

recognize distinct sets of RNAs, and these transitions that

occurred multiple times in evolution may have been facilitated

by the moderate specificity of PUF proteins (Gerber et al.,

2006; Hogan et al., 2015; Jiang et al., 2010).

Given the diversity of RBP properties and abundances (Singh

et al., 2015), we expect considerable variation between

occupancy landscapes of individual RBPs. For example, in

contrast to the PUM2 example above, highly expressed RBPs

([RBP] >> KD, consensus and [RBP] >> [RNA]consensus) will saturate

their consensus sites, rendering binding insensitive to concen-

tration changes and less discriminatory to nonconsensus sites.

Quantitatively defining cellular RBP occupancy landscapes

across diverse specificity and concentration regimes, their dy-

namic changes, and the biological consequences of these

changes represents an intriguing challenge for future studies.

Biophysical Insights into Pumilio-RNA Interactions
Our data revealed that the A-recognition modules (‘‘R4’’, ‘‘R6’’,

and ‘‘R8’’; Figure 1A) give highly similar specificities, whereas

the U-recognition modules (‘‘R1’’, ‘‘R3’’, ‘‘R5’’, and ‘‘R7’’) vary

dramatically in their specificities, from no discrimination against

A and C at position 5 to�102-fold specificity at positions 1 and 3

(Figures 2E and S7H–S7J). The differential specificity across the

U-recognition modules could arise, at least in part, from differ-

ences in orientations and constraints imposed by the different

neighboring positions, which can allow more or less optimal

positioning at each U-recognition module. Similarly, the slightly

weaker discrimination by the ‘‘R8’’ module, at the end of the

PUM domain, relative to the internal A-recognition modules,

may arise because there are fewer RNA conformational re-

straints 30 of this position, allowing noncognate bases to more

readily find alternative bound conformations.

The absence of measurable coupling between most neigh-

boring residues suggests that the orientation of entry of the

RNA into a site is not generally affected by the identity of the

neighboring residue. This observation suggests that cognate

and noncognate residues are bound with similar backbone con-

figurations (or ranges of backbone conformations), consistent

with crystallographic observations that backbone trajectories

leading into and out of Pumilio repeat sites are similar with

cognate and noncognate bases (Gupta et al., 2008; Lu and

Hall, 2011; Wang et al., 2009). More generally, the observed en-

ergetic independence between most adjacent RNA residues

suggests sufficient room in the binding sites and/or sufficient de-

grees of freedom in the RNA backbone to allow the backbone to

‘‘forget’’ its specific interactions at the adjacent sites. Neverthe-

less, a subset of positions do exhibit coupling, and coupling is

likely more prevalent for at least a subset of other RBPs.
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Larger energetic effects are observed in cases of inserted res-

idues that can flip away from the recognition sites (Figure 3D; Ta-

ble 1). A residue that follows a flipped residue will experience a

larger loss in conformational entropy upon docking than a resi-

due that is positionally restricted by a preceding docked residue.

Nevertheless, the specificity for neighbors is the same whether

or not there is an intervening flipped residue—i.e., the same

free energy terms can be used for each bound residue whether

or not there is a flipped residue and associated flipping penalty.

This constancy suggests that flipped residues do not signifi-

cantly alter the docked states for neighboring cognate and non-

cognate residues and that there are no alternative bound states

for the neighboring residues that are more favorable energeti-

cally than the standard docked state.

These observations are of practical importance for engineer-

ing PUF proteins and of broader importance for understanding

andmodeling RNA recognition by RBPs. Relative to DNA/protein

interactions, more diverse conformational broader ensembles

are expected for ssRNA, both bound and unbound to RBPs,

highlighting the enormous challenge faced in modeling RNA-

RBP binding affinities and specificities. Developing models that

ultimately predict thermodynamics and binding landscapes for

all RBPs we believe will require guidance and testing with large

accurate thermodynamic datasets, such as those obtained

herein.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d METHOD DETAILS
B Library design

B Library preparation and sequencing

B Protein expression and purification

B Cy3B-labeling of SNAP-tagged proteins

B RNA-MaP measurements

B HPLC purification of RNA oligonucleotides for compe-

tition binding measurements

B [g- 32P]-labeling of RNA oligonucleotides

B Gel-shift binding measurements

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Computational analyses

B Data filtering

B Assessing reproducibility and combining experimental

replicates

B Assessing the significance of scaffold differences

B Accounting for RNA structure

B Assessing alternative binding registers in single mutant

variants

B Development, testing and evaluation of thermody-

namic binding models

B Analysis of in vivo crosslinking data

B Enrichment of PUM2 sites within 30UTRs
B Modeling the cellular PUM2 binding landscape

B Occupancy prediction algorithm



B Predicting PUM1 and PUM2-mediated regulation

B RNA Bind-n-Seq analysis

d DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/

j.molcel.2019.04.012.

ACKNOWLEDGMENTS

We thank Wipapat Kladwang for outstanding technical assistance with emul-

sion PCR; Andre Gerber for PUM1 and PUM2 plasmids; Traci Hall for engi-

neered PUM1 plasmid; Namita Bisaria, Greg Hogan, Julia Salzman, Erik Van

Nostrand, and members of the Herschlag lab for helpful discussions and com-

ments on themanuscript. This work was funded by NIH grants P01 GM066275

(D.H., R.D., and W.J.G.), R35 GM122579 (R.D.), and R01 GM121487 and R01

GM111990 (W.J.G.) and by the Beckman Center. W.J.G. acknowledges sup-

port as a Chan-Zuckerberg Investigator.

AUTHOR CONTRIBUTIONS

Conceptualization, I.J., P.P.V., S.K.D., W.R.B., K.K., D.H., and W.J.G.; Per-

forming Experiments, P.P.V., I.J., and R.S.; Formal Analysis, S.K.D., W.R.B.,

P.P.V., I.J., K.K., and V.S.; Resources (imaging station design, maintenance,

and analysis tools), J.O.L.A. and C.J.L.; Writing – Original Draft: I.J., S.K.D.,

W.R.B., P.P.V., D.H., W.J.G.; Writing – Final Draft, I.J., S.K.D., W.R.B.,

P.P.V., K.K., J.O.L.A., C.J.L., V.S., R.S., R.D., D.H., andW.J.G.; Project Admin-

istration, D.H. and W.J.G.; Funding Acquisition, D.H., W.J.G., and R.D.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: September 13, 2018

Revised: January 31, 2019

Accepted: April 5, 2019

Published: May 8, 2019

SUPPORTING CITATIONS

The following references appear in the Supplemental Information: Campbell

et al. (2012), Elemento et al. (2007), Gasch et al. (2000), Kershaw et al.

(2015), Lapointe et al. (2015), Morris et al. (2008), Riordan et al. (2011), and

Wilinski et al. (2017).

REFERENCES

Becker, W.R., Jarmoskaite, I., Kappel, K., Vaidyanathan, P.P., Denny, S.K.,

Das, R., Greenleaf, W.J., and Herschlag, D. (2019a). Quantitative high-

throughput tests of ubiquitous RNA secondary structure prediction algorithms

via RNA/protein binding. bioRxiv. https://doi.org/10.1101/571588.

Becker, W.R., Jarmoskaite, I., Vaidyanathan, P.P., Greenleaf, W.J., and

Herschlag, D. (2019b). Demonstration of Protein Cooperativity Mediated by

RNA Structure Using the Human Protein PUM2. RNA 118, https://doi.org/10.

1261/rna.068585.118.

Berg, J.M., and Stryer, L. (2002). Biochemistry, 5th edition (W H Freeman).

Bohn, J.A., Van Etten, J.L., Schagat, T.L., Bowman, B.M., McEachin, R.C.,

Freddolino, P.L., and Goldstrohm, A.C. (2018). Identification of diverse target

RNAs that are functionally regulated by human Pumilio proteins. Nucleic Acids

Res. 46, 362–386.

Buenrostro, J.D., Araya, C.L., Chircus, L.M., Layton, C.J., Chang, H.Y.,

Snyder, M.P., and Greenleaf, W.J. (2014). Quantitative analysis of RNA-protein

interactions on a massively parallel array reveals biophysical and evolutionary

landscapes. Nat. Biotechnol. 32, 562–568.
Campbell, Z.T.,Bhimsaria,D., Valley,C.T., Rodriguez-Martinez, J.A.,Menichelli,

E.,Williamson, J.R., Ansari, A.Z., andWickens,M. (2012). Cooperativity in RNA-

protein interactions: global analysis of RNA binding specificity. Cell Rep. 1,

570–581.

Chen, Y., and Varani, G. (2013). Engineering RNA-binding proteins for biology.

FEBS J. 280, 3734–3754.

Cheong, C.G., and Hall, T.M. (2006). Engineering RNA sequence specificity of

Pumilio repeats. Proc. Natl. Acad. Sci. USA 103, 13635–13639.

Consortium, E.P.; ENCODE Project Consortium (2012). An integrated encyclo-

pedia of DNA elements in the human genome. Nature 489, 57–74.

Darnell, R.B. (2010). HITS-CLIP: panoramic views of protein-RNA regulation in

living cells. Wiley Interdiscip. Rev. RNA 1, 266–286.

Denny, S.K., Bisaria, N., Yesselman, J.D., Das, R., Herschlag, D., and

Greenleaf, W.J. (2018). High-throughput investigation of diverse junction ele-

ments in RNA tertiary folding. Cell 174, 377–390.e20.

Ding, Y., Tang, Y., Kwok, C.K., Zhang, Y., Bevilacqua, P.C., and Assmann,

S.M. (2014). In vivo genome-wide profiling of RNA secondary structure reveals

novel regulatory features. Nature 505, 696–700.

Dominguez, D., Freese, P., Alexis, M.S., Su, A., Hochman, M., Palden, T.,

Bazile, C., Lambert, N.J., Van Nostrand, E.L., Pratt, G.A., et al. (2018).

Sequence, structure, and context preferences of human RNAbinding proteins.

Mol. Cell 70, 854–867.e859.

Elemento, O., Slonim, N., and Tavazoie, S. (2007). A universal framework for

regulatory element discovery across all genomes and data types. Mol. Cell

28, 337–350.

Fujioka, A., Terai, K., Itoh, R.E., Aoki, K., Nakamura, T., Kuroda, S., Nishida, E.,

and Matsuda, M. (2006). Dynamics of the Ras/ERK MAPK cascade as moni-

tored by fluorescent probes. J. Biol. Chem. 281, 8917–8926.

Galgano, A., Forrer, M., Jaskiewicz, L., Kanitz, A., Zavolan, M., and Gerber,

A.P. (2008). Comparative analysis of mRNA targets for human PUF-family pro-

teins suggests extensive interaction with the miRNA regulatory system. PLoS

ONE 3, e3164.

Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz,

G., Botstein, D., and Brown, P.O. (2000). Genomic expression programs in the

response of yeast cells to environmental changes. Mol. Biol. Cell 11,

4241–4257.

Gerber, A.P., Herschlag, D., and Brown, P.O. (2004). Extensive association of

functionally and cytotopically relatedmRNAs with Puf family RNA-binding pro-

teins in yeast. PLoS Biol. 2, E79.

Gerber, A.P., Luschnig, S., Krasnow, M.A., Brown, P.O., and Herschlag, D.

(2006). Genome-wide identification of mRNAs associated with the transla-

tional regulator PUMILIO in Drosophila melanogaster. Proc. Natl. Acad. Sci.

USA 103, 4487–4492.

Goldstrohm, A.C., Hall, T.M.T., and McKenney, K.M. (2018). Post-transcrip-

tional regulatory functions of mammalian Pumilio proteins. Trends Genet. 34,

972–990.

Gr€undemann, D., and Schömig, E. (1996). Protection of DNA during prepara-

tive agarose gel electrophoresis against damage induced by ultraviolet light.

Biotechniques 21, 898–903.

Guo, J.U., and Bartel, D.P. (2016). RNA G-quadruplexes are globally unfolded

in eukaryotic cells and depleted in bacteria. Science 353, aaf5371.

Gupta, Y.K., Nair, D.T.,Wharton, R.P., and Aggarwal, A.K. (2008). Structures of

human Pumilio with noncognate RNAs reveal molecular mechanisms for bind-

ing promiscuity. Structure 16, 549–557.

Hackerm€uller, J., Meisner, N.C., Auer, M., Jaritz, M., and Stadler, P.F. (2005).

The effect of RNA secondary structures on RNA-ligand binding and the mod-

ifier RNA mechanism: a quantitative model. Gene 345, 3–12.

Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P.,

Rothballer, A., Ascano, M., Jr., Jungkamp, A.C., Munschauer, M., et al. (2010).

Transcriptome-wide identification of RNA-binding protein and microRNA

target sites by PAR-CLIP. Cell 141, 129–141.
Molecular Cell 74, 966–981, June 6, 2019 979

https://doi.org/10.1016/j.molcel.2019.04.012
https://doi.org/10.1016/j.molcel.2019.04.012
https://doi.org/10.1101/571588
https://doi.org/10.1261/rna.068585.118
https://doi.org/10.1261/rna.068585.118
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref2
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref3
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref3
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref3
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref3
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref4
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref4
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref4
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref4
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref5
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref5
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref5
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref5
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref6
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref6
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref7
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref7
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref8
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref8
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref9
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref9
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref10
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref10
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref10
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref11
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref11
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref11
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref12
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref12
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref12
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref12
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref13
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref13
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref13
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref14
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref14
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref14
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref15
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref15
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref15
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref15
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref16
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref16
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref16
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref16
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref17
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref17
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref17
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref18
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref18
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref18
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref18
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref19
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref19
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref19
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref20
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref20
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref20
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref20
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref21
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref21
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref22
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref22
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref22
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref23
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref23
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref23
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref23
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref24
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref24
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref24
http://refhub.elsevier.com/S1097-2765(19)30282-5/sref24


Halstead, J.M., Lionnet, T., Wilbertz, J.H., Wippich, F., Ephrussi, A., Singer,

R.H., and Chao, J.A. (2015). Translation. An RNA biosensor for imaging the first

round of translation from single cells to living animals. Science 347,

1367–1671.

Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M.,

Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A., Searle, S., et al. (2012).

GENCODE: the reference human genome annotation for The ENCODE

Project. Genome Res. 22, 1760–1774.

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X.,

Murre, C., Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-

determining transcription factors prime cis-regulatory elements required for

macrophage and B cell identities. Mol. Cell 38, 576–589.

Hogan, D.J., Riordan, D.P., Gerber, A.P., Herschlag, D., and Brown, P.O.

(2008). Diverse RNA-binding proteins interact with functionally related sets

of RNAs, suggesting an extensive regulatory system. PLoS Biol. 6, e255.

Hogan, G.J., Brown, P.O., and Herschlag, D. (2015). Evolutionary conservation

and diversification of Puf RNA binding proteins and their mRNA targets. PLoS

Biol. 13, e1002307.

Jain, N., Lin, H.C., Morgan, C.E., Harris, M.E., and Tolbert, B.S. (2017). Rules of

RNA specificity of hnRNP A1 revealed by global and quantitative analysis of its

affinity distribution. Proc. Natl. Acad. Sci. USA 114, 2206–2211.

Jankowsky, E., and Harris, M.E. (2017). Mapping specificity landscapes of

RNA-protein interactions by high throughput sequencing. Methods 118-119,

111–118.

Jiang, H., Guan, W., and Gu, Z. (2010). Tinkering evolution of post-transcrip-

tional RNA regulons: puf3p in fungi as an example. PLoS Genet. 6, e1001030.

Johnson, K.A., Simpson, Z.B., and Blom, T. (2009). Global kinetic explorer: a

new computer program for dynamic simulation and fitting of kinetic data.

Anal. Biochem. 387, 20–29.

Kedde, M., van Kouwenhove, M., Zwart, W., Oude Vrielink, J.A., Elkon, R., and

Agami, R. (2010). A Pumilio-induced RNA structure switch in p27-30 UTR con-

trols miR-221 and miR-222 accessibility. Nat. Cell Biol. 12, 1014–1020.

Keene, J.D., and Tenenbaum, S.A. (2002). Eukaryotic mRNPs may represent

posttranscriptional operons. Mol. Cell 9, 1161–1167.

Kershaw, C.J., Costello, J.L., Talavera, D., Rowe,W., Castelli, L.M., Sims, P.F.,

Grant, C.M., Ashe, M.P., Hubbard, S.J., and Pavitt, G.D. (2015). Integrated

multi-omics analyses reveal the pleiotropic nature of the control of gene

expression by Puf3p. Sci. Rep. 5, 15518.

Kivioja, T., V€ah€arautio, A., Karlsson, K., Bonke, M., Enge, M., Linnarsson, S.,

and Taipale, J. (2011). Counting absolute numbers of molecules using unique

molecular identifiers. Nat. Methods 9, 72–74.

Lambert, N., Robertson, A., Jangi, M., McGeary, S., Sharp, P.A., and Burge,

C.B. (2014). RNA Bind-n-Seq: quantitative assessment of the sequence

and structural binding specificity of RNA binding proteins. Mol. Cell 54,

887–900.

Lapointe, C.P., Wilinski, D., Saunders, H.A., and Wickens, M. (2015). Protein-

RNA networks revealed through covalent RNA marks. Nat. Methods 12,

1163–1170.

Lee, S., Kopp, F., Chang, T.C., Sataluri, A., Chen, B., Sivakumar, S., Yu, H., Xie,

Y., and Mendell, J.T. (2016). Noncoding RNA NORAD regulates genomic sta-

bility by sequestering PUMILIO proteins. Cell 164, 69–80.

Li, X., Quon, G., Lipshitz, H.D., and Morris, Q. (2010). Predicting in vivo binding

sites of RNA-binding proteins using mRNA secondary structure. RNA 16,

1096–1107.

Lin, S.Y., and Riggs, A.D. (1972). Lac repressor binding to non-operator DNA:

detailed studies and a comparison of eequilibrium and rate competition

methods. J. Mol. Biol. 72, 671–690.

Livesey, F.J. (2003). Strategies for microarray analysis of limiting amounts of

RNA. Brief. Funct. Genomics Proteomics 2, 31–36.
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BL21-CodonPlus (DE3)-RIPL competent cells Agilent Cat#230280

Chemicals, Peptides and Recombinant Proteins

SNAP-hPUM2 This paper N/A

hPUM1-SNAP This paper N/A

hPUM1 MUT3-1-SNAP This paper N/A

His-TEV Protease This paper N/A

cOmplete, Mini, EDTA-free Protease Inhibitor

Cocktail

Sigma-Aldrich Cat#11836153001

Cy3B NHS ester GE Healthcare Cat#PA63100

BG-NH2 New England Biolabs (NEB) Cat#S9148S

Agencourt AMPure XP beads Beckman Coulter Cat#A63881

SYBR Green I Nucleic Acid Stain Lonza Cat#50513

SYBR Gold Nucleic Acid Gel Stain Invitrogen Cat#S11494

Phusion High-Fidelity DNA Polymerase Thermo Fisher Scientific Cat#F530S

Phusion Hot Start II DNA Polymerase Thermo Fisher Scientific Cat#F549

Klenow fragment (30-50 exo(–)) NEB Cat#M0212L

Streptavidin PROzyme Cat#SA10

D-Biotin Thermo Fisher Scientific Cat#B20656

E. coli RNA polymerase holoenzyme NEB Cat#M0551S

Low Molecular Weight DNA Ladder NEB Cat#N3233S

T4 Polynucleotide Kinase Thermo Fisher Scientific Cat#EK0031

Gamma-32P ATP Perkin Elmer Cat#NEG035C

Bovine Serum Albumin NEB Cat#B9000S

Critical Commercial Assays

MiSeq Reagent Kit v3 (150-cycle) Illumina Cat#MS-102-3001

PhiX Control V3 Illumina Cat#FC-110-3001

QIAquick Gel Extraction Kit QIAGEN Cat#28704

MinElute PCR Purification Kit QIAGEN Cat#28004

QIAquick PCR Purification Kit QIAGEN Cat#28106

Zeba Spin Desalting Columns 7K MWCO, 5 mL Thermo Fisher Scientific Cat#89892

Amicon Ultra-4 Centrifugal Filter Unit, 3KDa Millipore Sigma Cat#UFC800324

Amicon Ultra-0.5 Centrifugal Filter Unit, 10KDa Millipore Sigma Cat#UFC501024

Oligonucleotides

DNA oligonucleotide library, see Table S5 CustomArray, this Study N/A

DNA oligonucleotides used for library assembly

and RNA array preparation, see Table S7

IDT N/A

RNA oligonucleotides used in gel-shift

measurements, see STAR Methods

IDT N/A

Deposited data

RNA-seq expression data for K562 cell lines ENCODE project

(Consortium, 2012)

https://www.encodeproject.org/files/ENCFF272HJP/

@@download/ENCFF272HJP.tsv, https://www.

encodeproject.org/files/ENCFF471SEN/@@download/

ENCFF471SEN.tsv
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

eCLIP data for PUM2 protein in human

K562 cells

(Consortium, 2012;

Van Nostrand et al., 2016)

https://www.encodeproject.org/files/ENCFF786ZZB/

@@download/ENCFF786ZZB.bam, https://www.

encodeproject.org/files/ENCFF732EQX/@@download/

ENCFF732EQX.bam, https://www.encodeproject.org/

files/ENCFF231WHF/@@download/ENCFF231WHF.

bamhttps://www.encodeproject.org/files/

ENCFF141SVY/@@download/ENCFF141SVY.bed.

gz https://www.encodeproject.org/files/

ENCFF141SVY/@@download/ENCFF141SVY.bed.gz

Refseq annotations for human genome

assembly GRCh38 (hg38)

(O’Leary et al., 2016) https://www.ncbi.nlm.nih.gov/refseq/

Protein-coding transcript sequences,

genome release GRCh38.p12

(Harrow et al., 2012) https://www.gencodegenes.org/human/release_28.html

RNA Bind-N-Seq data for PUM1 (Consortium, 2012;

Dominguez et al., 2018)

https://www.encodeproject.org/files/ENCFF894MLG/

https://www.encodeproject.org/files/ENCFF761JAF/

(input)

Software and Algorithms

RNAfold, v2.1.8, v2.1.9 (Lorenz et al., 2011) https://www.tbi.univie.ac.at/RNA/RNAfold.1.html

Bedtools https://bedtools.readthedocs.io/en/latest/

HOMER (v4.8.3) (Heinz et al., 2010) http://homer.ucsd.edu/homer/

Ensembl Biomart (Zerbino et al., 2018) http://ensembl.org

Samtools (v0.1.19-96b5f2294a) http://www.htslib.org/

pyatac ins https://nucleoatac.readthedocs.io/en/latest/pyatac/

Global fitting scripts to determine PUM2

thermodynamic model parameters

This paper https://github.com/pufmodel/PUM2_global_fitting

Pipeline for comparing in vivo to in vitro

occupancy across genomic sites

This paper https://github.com/GreenleafLab/puflibs/blob/master/

analyze_clip_data.py

Pipeline for fitting thermodynamic constants

from fluorescence data

This paper https://github.com/GreenleafLab/array_fitting_tools/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Daniel

Herschlag (herschla@stanford.edu).

METHOD DETAILS

Library design
Summary of library designs and complete sequence information is provided in Table S5.

Library preparation and sequencing
Ordering

DNA constructs consisting of the PUF library and short constant regions for subsequent PCR assembly (Figure S1D & Table S7;

50–TGTATGGAAGACGTTCCTGGATCC–[Variable region]–AGATCGGAAGAGCGGTTCAG–30) were ordered from CustomArray,

Inc. as part of a 90,000 oligo pool of 130 nt sequences. Each of the 34,927 unique sequences in the library (including variants not

discussed herein) was included at least in duplicate to increase the probability of error-free generation. In cases where the designed

sequencewas shorter than 130 nt, the construct was ‘‘padded’’ at the 30 endwith a random sequence that was eliminated during PCR

assembly. Primers and DNA oligonucleotides used in the RNA-MaP protocol were ordered from Integrated DNA Technologies (IDT).

Emulsion PCR

The oligonucleotide pool was amplified using emulsion PCR (ePCR) (Williams et al., 2006), allowing us to decrease length and other

biases during PCR amplification of our highly diverse library (lengths of 64–130 nt, variable structure content). We closely followed a

MYcroarray adaptation of the ePCR protocol from (Williams et al., 2006), as detailed below. Flat-bottom glass vials (1 mL) were
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cleaned with sterile water, dried, covered with parafilm, and frozen in a Petri dish filled with sterile water. The oil phase was prepared

from 4% (v/v) ABIL EM-90, 0.05% (v/v) Triton X-100 and 96% (v/v) mineral oil. The 50 mL aqueous phase consisted of 1.45 ng/mL of the

CustomArray oligo pool, 0.2 mM dNTPs, 1 mL of Phire Hot Start II DNA Polymerase (Thermo Fisher Scientific), 1x Phire II buffer,

0.5 mg/mL bovine serum albumin (BSA), and 2 mM of each of RNAPstall and Read2 primers (Table S7 and Figure S1D). A 300 mL

aliquot of the vortexed, pre-chilled oil phase was added to the glass vial embedded in the ice-filled Petri dish and stirred on a stir

plate with a sterile magnetic bar at 1000 rpm for 5 min. The aqueous phase was then added in five 10 mL aliquots and stirred for

another 10 min. The emulsion was divided between seven PCR tubes and amplified for 40 cycles of 98�C for 10 s, 65�C for 10 s,

and 72�C for 30 s. Completed PCR reactions were pooled in a 1.7 mL Eppendorf tube, and 1 mL of gel loading dye was added to

visualize the aqueous phase. Mineral oil (100 mL) was added and the mix was vortexed for 30 s, followed by centrifugation for

10 min at 13,000 g. The oil was discarded and 1 mL diethyl ether was added, the mixture was vortexed in a fume hood for 3 min

and centrifuged for 1 min at 13,000 g. Diethyl ether was discarded, 1 mL ethyl acetate was added, and the mixture was vortexed

in a fume hood for 3 min and centrifuged for 1 min at 13,000 g. Ethyl acetate was removed and the diethyl ether extraction step

was repeated, followed by discarding the diethyl ether. The tube was incubated for 5 min at 37�C with an open cap to allow residual

diethyl ether to evaporate. Water (40 mL) and Agencourt AMPure XP beads (Beckman Coulter; 72 mL) were added and incubated for

15 min at room temperature; the supernatant was removed, the beads were washed with 70% ethanol (2 3 100 mL), dried, and the

DNA was eluted in 10.5 mL water.

Size fractionation

To further prevent bias toward short oligonucleotides during the subsequent PCR assembly steps, the ePCR-amplified library was

fractionated by length on an 8% polyacrylamide gel. Following SYBR Green staining (1x; Lonza), the library-containing lane was

covered with aluminum foil to prevent UV-induced damage (Gr€undemann and Schömig, 1996; Sinha and H€ader, 2002), and divided

into 6 fractions based on UV visualization of marker lanes. The cut-out bands were frozen on dry ice and eluted overnight in TE buffer

(10 mM Tris,HCl, pH 8.0, 1 mM Na2EDTA) on a rotating platform at 8�C. The DNA was purified using the QIAGEN Gel Extraction Kit

(using a protocol adapted for PAGE purification: http://www.qiagen.com/kr/resources/resourcedetail?id=1426dbb4-da09-487c-

ae01-c587c2be14c3&lang=en, with QIAGEN MinElute columns). To remove residual co-purified short fragments, each fraction

was re-purified on an 8% denaturing gel (8 M urea). For denaturing PAGE, the samples and a Low-MW DNA ladder (New England

Biolabs; NEB) were heated in loading buffer (84% (v/v) formamide, 50 mM Na2EDTA, 0.04% Xylene cyanol, 0.04% Bromophenol

blue (BPB); 2.8 mL loading buffer per 5 mL sample) at 90�C for 3 min immediately before loading. The gel was stained with SYBR

Gold, the library-containing lanes were covered with aluminum foil and fractions were cut out based on UV visualization of marker

lanes. (Additional lanes with 83 nt and 129 nt DNA oligonucleotides were used to facilitate alignment of the NEB low-MW marker

with desired lengths.) The DNA was extracted from the gel as above and eluted in QIAGEN EB buffer with 0.1% Tween-20. Purified

fractions were re-amplified using theRead2 andRNAPstall_adapt primers (Table S7). The PCR reactions (25 mL) consisted of 2.5 mL of

the purified library fractions, 0.5 mM of each primer, 0.2 mM dNTPs, 3% DMSO, 0.02 U/mL Phusion HF Polymerase (Thermo Fisher

Scientific), and 1x Phusion HF buffer. The reactions proceeded for 15–23 cycles of 98�C for 10 s, 63�C for 20 s, and 72�C for 20 s and

were purified using QIAGENMinElute PCR Purification Kit. In all cases here and below, the number of PCR cycles was determined by

quantitative PCR (qPCR), using the same primer and template concentrations as in preparative PCR, but in the presence of 0.2–0.5x

SYBR Green. To prevent accumulation of by-products, cycle numbers corresponding to about one-third saturation (Ct value) were

used in preparative PCR reactions. Each library fraction was amplified for two to three different numbers of cycles around the Ct

value, and only reactions lacking high-molecular weight byproducts were propagated to the next step.

PCR assembly

Each purified length fraction was assembled into the final RNA array construct with the C_read1_bc_RNAP, D_read2, OligoC and

OligoD primers, as illustrated in Figure S1D (see Table S7 for primer sequences). TheC_read1_bc_RNAP primer contained a random-

ized 15 nt ‘barcode’ region that served as a uniquemolecular identifier (UMI) and allowed high-confidence sequencemapping during

subsequent steps (Buenrostro et al., 2014). The PCR reactions consisted of 0.5 nM of the amplified library fractions, 1.5 nM of

C_read1_bc_RNAP primer, 1.5 nM ofD_read2 primer, 0.5 mMofOligo C andOligo D primers, 0.2 mM dNTPs, 3%DMSO, 1x Phusion

HF buffer, and 0.01 U/mL Phusion HF Polymerase. The reactions proceeded for 18 cycles of 98�C for 10 s, 63�C for 30 s, and 72�C for

30 s, and the PCR products were purified using QIAquick PCR purification kit (QIAGEN).

Bottlenecking

To ensure that multiple copies of each UMI were present on the RNA array, the library was bottlenecked to�700,000 total molecules

(Buenrostro et al., 2014; Denny et al., 2018; Kivioja et al., 2011). UMI redundancy allows distinguishing between sequencing errors

and real sequence differences, as errors are unlikely to co-occur in both the UMI and the variable region (see Computational ana-

lyses below). To bottleneck, the PCR products were quantified by qPCR relative to the PhiX standard (Illumina). As noted above, the

six ‘sublibraries’, corresponding to the different oligonucleotide lengths in our library, were kept separate during all pre-sequencing

PCR steps to minimize bias in the final library assayed by RNA-MaP. Dilutions of 1000-fold and 10,000-fold for each fraction were

prepared in 0.1% Tween-20. The PhiX standard (Illumina) was diluted to 200 pM and seven serial dilutions were prepared in 0.1%

Tween-20. The DNA was then added to a PCR master mix containing 500 nM OligoC and OligoD primers, 200 mM dNTP mix,

0.5x SYBR Green, 3% DMSO, 0.02 U/mL Phusion DNA Polymerase, and 1x Phusion buffer. The PCR reactions proceeded for

35 cycles of 98�C for 10 s, 63�C for 30 s, and 72�C for 30 s. The library concentrations were determined based on the PhiX standard

curve of Ct values over concentration (determined in duplicate). The volumes corresponding to a total of 700,000 molecules across
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all sublibraries were calculated, and each sublibrary was amplified with OligoC and OligoD primers. The PCR reactions contained

1.1–5.3 fM of individual sublibraries (in 0.1% Tween-20), 500 nMOligoC andOligoD primers, 200 mM dNTP mix, 3% DMSO, 1x Phu-

sion buffer, and 0.01 U/mL Phusion DNA Polymerase. The reactions proceeded for 23 cycles of 98�C for 10 s, 63�C for 30 s, and 72�C
for 30 s, and the PCR products were purified with QIAquick PCR cleanup kit (QIAGEN). Concentrations of 1000-fold dilutions were

quantified by qPCR, and the different sublibraries were combined for sequencing. Due to a shortOligoD byproduct detected as domi-

nant species in the initial sequencing of our library, the bottlenecked library fractions were re-purified on a denaturing 8% acrylamide

gel and amplified using Phusion Hot Start II DNA Polymerase (Thermo Fisher Scientific) instead of regular Phusion, which eliminated

the primer byproduct. This library was sequenced and used in all RNA-MaP experiments reported herein.

Fiduciary marker preparation

To facilitate RNA array image alignment and quantification, we included a fiduciary marker oligonucleotide in our RNA array library

sample prior to sequencing (see below). This oligonucleotide resembled the library constructs, except for lacking the barcode, RNAP

promoter and RNAP start/stall regions and was PCR-assembled separately using an analogous series of steps. The final sequence

of the fiduciary oligo consisted of [C_adapter][Read1] CTT GGG TCC ACA GGA CAC TCG TTG CTT TCC [Read20][D0_adapter]
(Fiducial_chip, Table S7).

Sequencing

The bottlenecked, qPCR–quantified library fractions were combined and sequenced using MiSeq Reagent Kit v3 (150-cycle; 56 nt in

Read 1, 96 nt in Read 2). To ensure appropriate density of RNA clusters in the RNA-MaP experiments, our library constituted

9%–15% of the total 6–9.6 fmol DNA. The remaining DNA consisted of 84%–90% PhiX DNA and 1% of the fiduciary marker oligo-

nucleotide (Fiducial_chip, Table S7). The final numbers of transcribable clusters were 3.6 3 105–6.5 3 105 on the sequencing chips

used in this study.

Protein expression and purification
The RNA-binding domains of H. sapiens PUM1 (828-1176; isoform 2), PUM2 (706-1059; isoform 1), and mutant PUM1 (MUT3-1 in

(Cheong and Hall, 2006)) (828-1176) were cloned into a custom pET28a-based expression vector in frame with an N-terminal His-

tag and a SNAP tag (New England Biolabs) at either the N- (PUM2) or C terminus (hPUM1 and hPUM1MUT3-1; primers and plasmid

sequences available upon request). Constructs were sequenced and transformed into E. coli protein expression strains BL21 (DE3)

or RIPL BL21 CodonPlus (Agilent). Protein expression was induced at an OD600 of between 0.6–0.8 with 0.5–1 mM IPTG at 18–20�C
for 18–20 h. Cell pellets were lysed four times using an Emulsiflex (Avestin) in Buffer A containing 20 mMNa-HEPES, pH 7.4, 500 mM

potassium acetate (KOAc), 5% glycerol, 0.2% Tween-20, 10 mM imidazole, 2 mM dithiothreitol (DTT), 1 mM phenylmethylsulfonyl

fluoride (PMSF) and 2X Complete Mini protease inhibitor cocktail (Roche). The lysate was centrifuged at 20,000 g for 20 min to re-

move membranes and unlysed cells. Nucleic acids in the lysate were precipitated with dropwise addition of Polyethylene Imine

(Sigma) to a final concentration of 0.21% (v:v) with constant stirring at 4�C and pelleted by centrifugation at 20,000 g for 20 min.

Cleared lysates were then loaded on a Nickel-chelating HisTrap HP column (GE), washed extensively, and His-tagged proteins

were eluted over a 10–500 mM imidazole gradient. Protein fractions were pooled and desalted into Buffer B (20 mM Na-HEPES,

pH 7.4, 50 mM KOAc, 5% glycerol, 0.1% Tween-20, 2 mM DTT) using a HiPrep 26/10 desalting column. The His-tag was removed

by incubation with TEV protease for 13–16 h at 4�C, and the protein solution was loaded for a second time on the HisTrap HP column.

The flow-through containing cleaved protein was collected and subsequently desalted into Buffer B. The protein was then loaded on

a Heparin or HiQ column and eluted over a linear gradient of KOAc from 50 to 1000 mM. Fractions were pooled and desalted into

Buffer C containing 20 mM Na-HEPES, pH 7.4, 100 mM KOAc, 5% glycerol, 0.1% Tween-20 and 2 mM DTT, concentrated using

Amicon Ultra–0.5 10KDa filters and diluted two-fold with Buffer C containing 80% glycerol for final storage at –20�C. SDS-PAGE

gels of final purified protein constructs are shown in Figure S7K.

Cy3B-labeling of SNAP-tagged proteins
Cy3B-labeled SNAP tag substrate was prepared by coupling Cy3B NHS ester (GE Healthcare, 0.75 mmol) with 1.5-fold excess

(1.13 mmol) of amine-terminated benzylguanine (NH2-BG; New England BioLabs) in the presence of 1.13 mmol triethylamine in dime-

thylformamide. The reaction (103 mL) was incubated overnight on a rotating platform at 30�C. The Cy3B-BG product was purified by

reverse phase HPLC on an Agilent ZORBAX Eclipse Plus 95Å column and dried by speed-vac evaporation (46% yield).

SNAP-tagged PUF proteins were labeled by incubating 5–10 mM of purified protein with 20 mM of Cy3B-BG in Buffer C. The tube

was covered with aluminum foil and rotated at 4�C for 12–14 h. Unincorporated dye was removed with Zeba Spin Desalting Columns

(Thermo Fisher Scientific) equilibrated with Buffer C; the protein was concentrated using Amicon Ultra 10KDa filters and diluted two-

fold with Buffer C containing 80% glycerol for final storage at –20�C. The labeling efficiencies (based on total protein concentration

and Cy3B absorbance at 559 nm; Cy3B extinction coefficient: 130,000 M-1cm-1) were 60% (PUM2-SNAP), 53% (SNAP-PUM1) and

36% (mutant SNAP-PUM1).

RNA-MaP measurements
Imaging station setup

The RNA-MaP imaging platform was built out of a repurposed Illumina GAIIx instrument with custom-designed additions

as described in (Buenrostro et al., 2014; Denny et al., 2018; She et al., 2017). Briefly, the custom additions included a fluidics
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adaptor interface to pump reagents to the MiSeq flow cell, a Peltier-based temperature-controlled platform to house the flow cell, an

autosampler with 96-well cooling block for RNA-MaP reagents, and a dual–color laser excitation system. Two lasers were employed:

a 660 nm ‘red’ laser with a 664 nm long pass filter and a 530 nm ‘green’ laser with a 590 nm band pass filter. MATLAB scripts devel-

oped in-house were used to control the fluidics, temperature, position, and imaging of the flow cell. Flow cell images were acquired

with 400 ms exposures at 200 mW laser power. Camera focal distances were determined through iterative rounds of imaging of the

flow cell and adjustment of the camera’s z-position.

RNA transcription in the flow cell

Using the imaging station fluidics system, the flow cell was washed with 5 mM Na2EDTA in formamide to remove hybridized DNA

(250 mL flowed at 100 mL/min, 55�C), followed by Reducing buffer (100 mM Tris,HCl, 125 mM NaCl, 0.05% Tween-20, 100 mM

Tris[2-Carboxyethyl]phosphine-HCl (TCEP), pH 7.4) to remove any residual fluorescence from the sequencing reaction (390 mL,

10 min at 60�C). A fluorescent probe complementary to the RNA Polymerase stall sequence (Fluorescent_stall’; sequences of oligo-

nucleotides used in the RNA-MaP protocol are indicated in Table S7) was then annealed to the library and imaged to determine the

efficiency of the cleaning steps (500 nM Fluorescent_stall’ in Annealing buffer: 1x SSC buffer, 7 mMMgCl2, 0.01% Tween-20; 11 min

at 37�C). After imaging, the fluorescent probe was removed by washing with 250 mL of 100% formamide (55�C). The flow cell was

washed with Wash buffer between steps (290 mL; 10 mM Tris,HCl, pH 8.0, 5 mM Na2EDTA, pH 8.0, 0.05% Tween-20). Henceforth,

wash steps were performed with a 250 mL volume of the specified buffer, unless otherwise noted.

To prepare double-stranded DNA (dsDNA), 50–biotinylated primer (Biotin_D_Read2, 500 nM) was annealed to the library in Hybrid-

ization buffer (5x SSC buffer, 5 mM Na2EDTA, 0.05% Tween-20) for 15 min at 60�C followed by a 10 min incubation at 40�C. The
fluorescent oligonucleotide complementary to the fiducial marker (Fiducial_flow) was also included in the hybridization mixture at

250 nM. After washing the flow cell with Annealing buffer, an additional 500 nM of Biotin_D_Read2 (and 250 nM Fiducial_flow)

was annealed to the library in Annealing buffer at 37�C for 8 min. The flow cell was then washed with Klenow buffer (1x NEB buffer

2 (NEBB7002S), 250 mMeach dNTP, 0.01%Tween-20). Double-stranded DNAwas generated by pumping 130 mL of 0.1 U/ml Klenow

fragment (30-50 exo(–); NEBM0212L) into the flow cell in three stages separated by 10min intervals each. The flow cell wasmaintained

at 37�C for this period. Unextended single-stranded DNA templates were subsequently blocked by annealing a non-fluorescent

version of the stall probe (Dark_stall0) in a process identical to the one described above.

After dsDNA generation, 1 mMstreptavidin in Annealing buffer was pumped into the flow cell and allowed to bind to the biotinylated

primer for 5 min at 37�C. Excess streptavidin was then washed out of the flow cell with Annealing buffer. Unbound biotin binding sites

in the streptavidin tetramer were saturated by incubating the flow cell for 5 min with 5 mM free biotin in Annealing buffer. Excess un-

bound biotin was washed out with Annealing buffer.

RNA transcription proceeded in two stages, initiation/stall and extension. In the initiation/stall phase, 130 mL of 0.06 U/mL E. coli

RNA polymerase holoenzyme (RNAP; NEBM0551S) was allowed to initiate transcription for 20 min at 37�C on the dsDNA templates

in Initiation buffer, which lacked CTP (20 mM Tris,HCl pH 8.0, 7 mM MgCl2, 20 mM NaCl, 0.1% 2-Mercaptoethanol (BME), 0.1 mM

Na2EDTA, 1.5% glycerol, 0.02 mg/mL BSA, 0.01% Tween-20, and 2.5 mM each of ATP, GTP, and UTP). Upon encountering the first

cytosine (C27), the polymerase stalls, thereby sterically preventing the loading of additional enzymes on the same template (Buen-

rostro et al., 2014). Excess RNAP was washed out of the flow cell with Initiation buffer. Subsequently, Extension buffer was added,

which contained all 4 ribonucleotides (20 mM Tris,HCl pH 8.0, 7 mMMgCl2, 20 mMNaCl, 0.1% BME, 0.1 mMNa2EDTA, 1.5% glyc-

erol, 0.02 mg/mL BSA, 0.01% Tween-20, and 1 mM each of ATP, GTP, UTP and CTP). The Extension buffer also contained 500 nM

each of Fluorescent_stall0 and Dark_read2 oligonucleotides, which were intended to block the regions flanking the variable region in

the nascent RNA transcript (Figure 1C) and to prevent undesired intramolecular interactions, as well as to allow visualization of the

transcript. Transcription was allowed to proceed for 10 min at 37�C. RNA polymerase eventually is stalled at the streptavidin road-

block at the end of the DNA template, exposing the nascent RNA molecules for binding experiments (Figure 1C).

To ensure complete blocking of RNA regions flanking the variable sequence, transcription was followed by further hybridization of

Fluorescent_stall0 and Dark_read2 oligonucleotides (500 nM) for 10 min at 37�C in Annealing buffer. Finally, the flow cell was washed

with Binding buffer (20 mMNa-HEPES, pH 7.4, 100mMKOAc, 0.1% Tween-20, 5%glycerol, 0.1 mg/ml BSA, 2mMMgCl2 and 2mM

DTT), the temperature was lowered to 25�C (except for 37�C experiments), and the flow cell was imaged to quantify the fluorescence

from the RNA-annealed Fluorescent_stall0 probe.
RNA-MaP equilibrium binding experiments

To determine PUM1 and PUM2 binding affinities, the RNA library was sequentially equilibrated with increasing concentrations of

Cy3B-labeled PUM proteins, and the amount of Cy3B fluorescence colocalized with each RNA cluster was determined at each con-

centration. Two-fold serial protein dilutions (15–17) were prepared in 1x Binding buffer andwere stored in light-protected tubes on ice

or in the 4�C autosampler chilling block until the incubation. Protein solution (460 mL) was pumped into the flow cell at each concen-

tration and incubated for times ranging from 33 min for the lowest concentrations to 19 min for the highest protein concentrations

(25�C; 15–23 min at 37�C). These incubation times were established to be sufficient for equilibration by association and dissociation

time courses (halftime% 5.3 min; see also (Vaidyanathan et al., 2017)). The incubation temperature was 25 or 37�C, as indicated for

the individual experiments.
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HPLC purification of RNA oligonucleotides for competition binding measurements
Desalted RNA oligonucleotides were ordered from IDT and purified by reverse-phase HPLC (XBridge Oligonucleotide BEH C18 Prep

column or Agilent ZORBAX Eclipse Plus C18 column), using an acetonitrile gradient in the presence of 0.1 M triethylamine acetate.

Following purification, the solvent was exchanged into MilliQ water with Amicon Ultra 3KDa concentrators.

[g- 32P]-labeling of RNA oligonucleotides
RNAoligonucleotides for direct bindingmeasurements were ordered from IDT and 50 labeledwith [g- 32P] ATP (Perkin Elmer) using T4

polynucleotide kinase (T4 PNK, Thermo Fisher Scientific). The 5 mL reactions contained 1x PNK buffer (Thermo Fisher Scientific),

5 mM oligonucleotide, 5 mM [g- 32P] ATP and 1 mL of T4 PNK. The reactions were incubated at 37�C for 30 min and purified by

non-denaturing gel electrophoresis (20% acrylamide).

Gel-shift binding measurements
Competition binding measurements

To obtain PUM2 binding affinities in the absence of potential structure formation and alternative sites, and to compare the affinities

determined by different approaches, we performed competition gel shift bindingmeasurements with 8-mer oligonucleotides carrying

a subset of single mutations in the UGUAUAUA background. PUM2 (0.68 nM) was combined with trace labeled ‘‘S1a’’ RNA

(UCUCUUUGUAUAUAUCUCUU, <0.08 nM) in binding buffer (2 mM DTT, 100 mM KOAc, 0.2% Tween-20, 20 mM sodium

HEPES, pH 7.4, 5% glycerol, 0.1 mg/mL BSA, 2 mM MgCl2), and diluted two-fold into solutions containing varying concentrations

of unlabeled competitor RNAs (3-fold serial dilution series; 7–8 concentrations per oligonucleotide; final concentrations were 0.34 nM

PUM2, < 0.04 nM labeled S1a RNA, 0.17––3330 nM competitor RNA, depending on the oligonucleotide). Binding reactions were

incubated at 25�C for at least 1 h; equilibration was established by measuring binding after 1 h and 4.5 h incubations, which gave

consistent results.We also performed controls for titration effects, by incubating themost tightly bound oligonucleotides (consensus,

5G and 7G variants) with 0.16 or 0.32 nM PUM2 (final concentration), giving consistent affinities. Following equilibration, 7.5 mL al-

iquots were transferred to 7.5 mL ice-cold loading buffer (5% Ficoll PM 400 (Sigma), 0.03% BPB, and 2 mM unlabeled S1a RNA in

binding buffer). The low temperature and unlabeled consensus RNA in the loading buffer prevented changes due to potential re-equil-

ibration during sample loading (Vaidyanathan et al., 2017)). The samples were carefully and immediately loaded on a continuously

running 20% native acrylamide gel (5�C, 750 V, 0.5x Tris/Borate/EDTA (TBE) running buffer: 44.5 mM Tris-borate, 1 mM Na2EDTA,

pH 8.3; DANGER: extreme caution is required in this step due to high voltage; https://ehs.stanford.edu/reference/electrophoresis-

safety). Gels were dried, exposed to phosphorimager screens and scanned with a Typhoon 9400 Imager.

Binding affinity for the labeled S1a oligonucleotide was measured in parallel by incubating 0.0038–81 nM PUM2 (3-fold serial di-

lutions) with trace labeled S1a RNA (<0.04 nM) in binding buffer for at least 1 h at 25�C. Samples were analyzed by gel electrophoresis

as above. Measurements with three labeled RNA concentrations across a 9-fold range (upper limits of 13–120 pM) gave consistent

results, indicating no titration effects. Sufficient equilibration time was established by measuring the dissociation rate (0.011 s-1, cor-

responding to 5.25 min upper limit of equilibration time––i.e., five half-lives; see below (Vaidyanathan et al., 2017)).

The gels were quantifiedwith TotalLabQuant and fittingwas performedwith KaleidaGraph 4.1 (Synergy). The affinity for the labeled

S1a RNA was determined by fitting to a single-site binding equation:

q=A3
P½ �

KD + P½ �+b (Eq. 1)

where q is fraction bound RNA, A is amplitude, [P] is PUM2 concentration, KD is the equilibrium dissociation constant and b is back-

ground. Competitor affinities (KD,comp) were determined using the equation by Lin & Riggs (Lin and Riggs, 1972):

KD;comp =
23K

�
D

3 Rcomp½ �1=2

23 P½ �total-- R�½ �total--23K
�
D

(Eq. 2)

where KD* is the dissociation constant of the labeled S1a RNA; [Rcomp]1/2, the competitor concentration at which half of the labeled

RNA is bound; [P]total, the protein concentration; and [R*]total the labeled RNA concentration. To determine the fraction of competitor

RNA at which half of labeled RNA was bound, the competition binding curves were normalized by the fraction of labeled S1a RNA

bound at saturation with no competitor (0.94). [R*]total was the upper limit of the labeled RNA concentration based on the total input

and elution volume in the labeling reaction (<0.04 nM). Using the lower limit based on scintillation measurements of the 32P label

(�0.004 nM) did not affect relative affinity calculations and affected absolute affinities by <10%. The values shown in Figure 2F,

S3F are averages and 95% CIs from two replicate measurements.

For determination of flanking sequence effects, CUUGUAUAUAN oligonucleotides (N = A/C/G/U) were ordered from IDT, 50 end
labeled with [g- 32P] ATP, and binding was measured as described for the S1a RNA above.

To compare single mutant effects determined by gel-shift to those determined by RNA-MaP, DDG values for the 8-mer oligonu-

cleotides were calculated relative to the UGUAUAUA consensus. For position 9 variants, DDG values were determined relative to the

most tightly bound residue (‘G’; Figure S2D).
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Dissociation rate constant measurements

PUM2 dissociation rate constant from S1a RNA was measured by incubating 3.8 nM PUM2 with labeled S1a RNA (<0.5 nM) in bind-

ing buffer at 25�C for 50 min, followed by addition of 2.5-fold volume excess of unlabeled RNA chase in binding buffer (final concen-

trations: 1 nM PUM2, <0.14 nM labeled S1a RNA, 1 mM unlabeled S1a RNA). At various time points, 7.5 mL aliquots were moved to

7.5 mL ice-cold loading buffer (5% Ficoll PM 400 (Sigma), 0.03% BPB in binding buffer) and immediately loaded on continuously

running 20% native acrylamide gel. The dissociation curve was fit to a single exponential in Kaleidagraph:

q= A � bð Þ3 e�koff t +b (Eq. 3)

where q is fraction bound RNA, A is the fraction bound before adding the chase (A = 0.90), b is the fraction bound at the completion of

the dissociation reaction (b = 0.02), koff is the dissociation constant, and t is time after adding chase.

Determination of active protein fraction by titration

Saturating concentration of unlabeled consensus RNA (10–200 nM; S1a or UCUUGUAUAUAUA for wild-type PUM1 and PUM2,

UCUUGUAUUUAUA for mutant PUM1) was mixed with trace 32P-labeled RNA of the same sequence (<0.15 nM) and incubated

with protein concentrations at least 4-fold below and above the RNA concentration for 45 min – 1 h (25�C). Following native gel

electrophoresis, active protein fraction was determined from the intersection of lines fit through protein concentrations below and

above the breakpoint. Throughout, the protein concentrations and absolute affinities reflect active protein concentrations (SNAP-

Cy3B-PUM2: 57%, PUM1-SNAP-Cy3B: 61%,mutPUM1-SNAP-Cy3B: 20%, unlabeled SNAP-PUM2 used for gel-shift experiments:

38%–45%).

QUANTIFICATION AND STATISTICAL ANALYSIS

Computational analyses
Processing sequencing data

Illumina MiSeq sequencing data were computationally processed to extract the tile identifier and the x- and y-locations of each

sequenced cluster from the fastq file output (Denny et al., 2018; She et al., 2017). Sequence clusters were divided into three cate-

gories: (1) clusters encoding our RNA library, (2) clusters containing the fiducial sequence, and (3) inert ‘‘background’’ sequence clus-

ters lacking the RNAP initiation site or the fiducial sequence. This assessment was based on alignment of the read1 sequence to (1)

the RNA polymerase initiation site and stall sequence ‘‘TTTATGCTATAATTATTTCATGTAGTAAGGAGGTTGTATGGAAGACG

TTCCTGGATCC,’’ or to (2) the fiducial sequence ‘‘CTTGGGTCCACAGGACACTCGTTGCTTTCC,’’ or (3) neither, respectively.

While every cluster was fit during the 2D Gaussian fitting (described below), only clusters containing the fiducial sequence were

used during the cross-correlation of the images to the sequencing data. KD fitting was only performed on RNA-encoding clusters

(described below).

Fitting images

To attribute fluorescent binding events to individual sequence variants, the images taken during the RNA array experiment weremap-

ped to the sequencing data output from the Illumina MiSeq. Each image had a set of fiducial clusters, which were visualized with a

fluorescently labeled complementary oligo (see RNA transcription in the flow cell above). The x- and y-locations of each fiducial clus-

ter were cross-correlated with each fluorescent image in an iterative fashion to determine a smooth function of x and y that represents

the location-dependent offset between the image and the sequencing data locations. This ‘‘registration offset map’’ enabled corre-

lation between image and sequencing locations at sub-pixel resolution, as described in (She et al., 2017). Once this map was deter-

mined, each image was fit to the sum of 2D Gaussians, with each Gaussian centered at each of the cluster locations from the regis-

tered sequencing data output. The quantified fluorescence of each cluster was thus the integrated fluorescence within the fit 2D

Gaussian (f = 2pas2 where f is the integrated fluorescence and a and s are the fit amplitude and standard deviation, respectively).

Identifying library variants from sequencing data

Incorporation of a 15-nt unique molecular identifier (UMI) in our library allowed us to minimize the effect of sequencing errors when

associating each sequenced cluster with its underlying sequence variant, as described in (Buenrostro et al., 2014). Prior to

sequencing, the library was bottlenecked and reamplified (see Library preparation above), resulting in increased representation of

each UMI that survived the bottlenecking. We assumed that all sequences associated with the same UMI came from the same mo-

lecular variant, so that any variation between these sequences was the result of sequencing error. To resolve sequencing errors, a

consensus sequence of the associated library variant was determined for each UMI with a per-base voting strategy. Only UMIs with a

significant fraction of variantsmatching the consensus sequencewere used, as evaluated by a binomial null model. For eachUMI, a p

value was calculated based on the number of associated sequences that matched the consensus sequence and the total number of

sequences, assuming a rate of success under the null model of 25%. UMIs with a higher rate of matching than expected by chance

under the null model (i.e., with p value <0.01) were defined as successfully associating with a consensus sequence. Clusters were

then associated to a designed library variant based on the cluster’s UMI.

Fluorescence normalization

To account for inter-cluster variation in maximum fluorescence, we normalized the amount of protein bound at a given cluster by

the total amount of transcribed RNA in that cluster. This normalization was performed by dividing the integrated fluorescence of
e7 Molecular Cell 74, 966–981.e1–e18, June 6, 2019



the cluster in the green channel (i.e., the channel imaging the bound protein) by the integrated fluorescence of the same cluster in the

red channel (i.e., the channel imaging the fluorescent oligo annealed to the transcribed RNA). To prevent dividing by small numbers

and inflating the normalized signal toward infinity, values of the red channel fluorescence below the threshold of the first percentile of

the distribution of the red channel fluorescence across clusters were set to the value of the threshold.

Determining the free energy of binding

The normalized fluorescence values of bound protein across different solution protein concentrations were used to determine the

equilibrium dissociation constant (KD) between the protein and each RNA variant. The fitting procedure was split into several steps

to allow robust fitting across a range of affinities, and the bindingmodel accounted for observed non-specific binding events. In brief,

the normalized fluorescence values for each individual cluster were fit to a binding curve to obtain best-fit values for KD and other fit

parameters (see Single cluster fitting below). These best-fit values for individual clusters were used to determine distributions for fit

parameters that we expect to be variant-independent —i.e., KD,NS, fmin, and fmax, which are each defined below. The distributions of

these common values across library variants were used to refine the KD value for each RNA variant.

Single cluster fitting

Initially, fluorescent values for each cluster were fit to a binding curve. This bindingmodel incorporated a nonspecific binding term, as

follows:

R+P#
KD

R,P#

KD;NS

+P

R,P,P (Eq. 4)

where R is RNA, P is protein, KD is the dissociation constant (KD = eDG/RT) and KD,NS is the non-specific dissociation constant for a

second protein monomer that binds to the RNA-protein complex (KD,NS = eDGNS=RT).

The normalized fluorescence of a cluster at protein concentration [P] can be defined as:

f = fmin + fmax

P½ �
P½ �+KD

1+
P½ �

P½ �+KD;NS

� �
(Eq. 5)

where fmin is the background fluorescence in the absence of bound protein, fmax is the fluorescence signal at saturation, and [P] is the

concentration of the protein in solution (here, [P]z [P]total). This model was used to account for an observed increase in fluorescence

at high concentrations of protein after apparent saturation (Figure 1D). We did not observe a corresponding increase in fluorescence

for non-binding variants, and the extent of ‘non-specific’ binding increased with greater specific binding affinity. Together, these ob-

servations support themodel that a second protein monomer binds to the RNA-protein complex on chip (as opposed to non-specific

binding to the DNA or unbound RNA, which would be independent of bound protein).

Least-squares fitting was performed using the Python package lmfit (v0.8.3). The initial estimates and constraints are as follows:

fmin was initialized to the median fluorescence across clusters in the images with no protein applied, and was constrained to be not

less than zero during the fitting; fmax was initialized at the maximum fluorescence observed at any concentration of protein for that

cluster, andwas similarly constrained to not be less than zero;KD was initialized at the highest concentration of the protein; andKD,NS

value was initialized at five-fold the highest concentration of the protein.

Finding common values for KD,NS, fmin, and fmax across variants

Allowing all four free parameters (fmin, fmax, KD, and KD,NS) to float during the fitting process led to some spurious effects. In particular,

variants with low affinity that do not achieve saturation within the probed protein concentration range can be fit approximately equally

well with different values for fmax andKD,NS, ultimately leading to uncertainty in the fit value forKD. For example, a variant that does not

achieve saturationmay be fit equally well with lower values forKD and fmax, higher values forKD and fmax, or a higher value for theKD,NS

and lower value for KD. On the other hand, the library contains numerous tightly bound variants which have achieved saturation and

fromwhich we can extract most likely values for the sequence-independent parameters fmin, fmax, andKD,NS. These values are largely

constant across different molecular variants that did achieve near-saturation (Figure S1E,F), allowing us to reasonably assume that

the same values are applicable to all molecular variants, i.e., even those that did not achieve saturation, and applying these well-

defined estimates for fmin, fmax, and KD,NS allows more confident fitting of the KD values. To limit noise, the estimates for fmin, fmax,

and KD,NS were determined based on the per-variant values of each fit parameter, where per-variant values are the median of the

single-cluster values associated with the same molecular variant.

Estimating fmin

The value for fmin was largely consistent across variants (Figure S1E); thus, the estimate for this fit parameter was simply the median

value across variants.

Estimating the distribution of fmax

To define the distribution of fmax values across molecular variants, a subset of variants with low and precisely measured KD values

was used, based on the single cluster fits. Variants used to define this distribution had KD values less than 5% of the highest con-

centration of protein. In addition, the precision of the per-variant values of KD was evaluated based on the proportion of the variant’s

single cluster fits having a goodness-of-fit (R2) greater than 0.5, the standard error onDG (DG=RTln(KD)) less than 1 kcal/mol, and the

standard error on the fit fmax less than fmax. If a significant fraction of the clusters associated with this variant passed these filters,

then the variant was considered to have a ‘‘precise’’ measurement of KD. Significance was assessed based on rejecting the null
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hypothesis that 25%of clusters would pass all these filters by chance alone (binomial p value < 0.01). For variants that did not achieve

saturation the fmax was undefined, so the distribution of fmax values across the tightly bound molecular variants was used to find error

estimates on the KD values that reflect this uncertainty.

The fmax distribution across these variants was fit to a gamma distribution with fixed mean for the entire experiment, but whose

standard deviation was dependent on the number of clusters per molecular variant (i.e., standard deviation should be proportional

to 1=
ffiffiffi
n

p
, where n is the number of clusters per variant). This distribution reflects the fact that as the number of clusters increases, we

can obtain more precise estimates of fmax and thus KD. The mean fmax value was obtained by fitting the per-variant fmax values to a

gamma distribution, and obtaining themean of the distribution, mglobal. To obtain the standard deviation of the fmax distribution at each

value of n (where n is the number of clusters per variant), the distribution of per-variant fmax values of variants with n clusters was fit to

the gamma function fðxÞ, for every normalized fluorescence value x:

fðx � kn; an; qnÞ=
�
x � kn
qn

�an�1

exp

�
� x � kn

qn

��
GðanÞ (Eq. 6)

where kn is a free parameter, an,qnhmglobal, and the resulting standard deviation is sn =
ffiffiffiffiffiffiffiffiffiffi
anq

2
n

q
. Allowing k to float resulted in better

estimates of the standard deviation when distributions were more asymmetric, as often occurred for variants with small n. The value

of kn was initialized at 0, and sn was initialized at the standard deviation of the fmax values.

The values for sn may be subject to noise, given that some values of n had many more variants associated with that number of

clusters than others did. To smooth these values, the sn values were used to fit the expected analytical function that defines the rela-

tionship between number of measurements and standard error, sðnÞ = ðs1=
ffiffiffi
n

p Þ + s0, where s0 and s1 are free parameters. s1 is the

standard deviation on the estimate of fmax with only one measurement, and s0 represents the standard deviation of fmax among

different molecular variants if all variants were measured an infinite number of times. We expect this term to be nonzero in the

case that the fmax depends on the molecular variant: e.g., if certain variants are trapped in stable secondary structures that do not

unfold on the timescale of the binding experiment.

The estimator for fmax for each molecular variant with n clusters per variant is then the gamma distribution:

fðx; an; qnÞ=
�
x

qn

�an�1

exp

�
� x

qn

��
GðanÞ (Eq. 7)

where an = ðmglobal=sðnÞÞ2 and qn = sðnÞ2=mglobal, which depends only on mglobal and sðnÞ, and the number of clusters per variant n.

Estimating KD,NS

The value for KD,NS was determined by taking the median value across the subset of variants with low and precisely measured KD

values, based on the single cluster fits, as described above for determining the distribution of fmax values. The DGNS terms

( = RTlog(KD,NS)) for each protein were similar, with the following values: PUM2: –8.98 and –8.87 kcal/mol for replicates 1 and 2,

respectively (25�C), –8.65 kcal/mol (37�C); WT PUM1: –8.46 kcal/mol; mutant PUM1: –8.19 kcal/mol.

Applying common values for KD,NS, fmin, and fmax to refine estimates for KD

Binding isotherms were refined for all variants using the variant-independent values for fmin, KD,NS, and, for the cases in which the

variant did not achieve near-saturation, fmax. To perform this refinement, clusters associated with each variant were resampled to

obtain median fluorescence values across resampled clusters. This vector of median fluorescence values was fit to a binding

isotherm with the values for fmin and KD,NS fixed to the variant-independent values obtained above. For the cases where the variant

did not reach near-saturation the value for fmax was also fixed. Not achieving near-saturation was defined as themedian fluorescence

value at the highest concentration of protein being less than the lower bound of the 95% confidence interval on fmax. In this case, the

value for fmax was sampled from the variant-independent distribution of fmax,n (with n equal to the number of clusters associated with

this variant) (Equation 7). To obtain uncertainty estimates on the fit fmax and KD values, this resampling procedure was repeated 100

times. In the case that the variant did not achieve saturation, a different value for fmax was sampled for each iteration.

The 95%confidence intervals onKDwere obtained using these 100 values. Themedian fitKD obtained from the initial single cluster

fits was used as the initial value in the least-squares fitting of each fitting iteration. For variants where fmax was allowed to float, the

median fit fmax was used as the initial value.

Fitting background clusters to determine maximum measurable DG

To obtain a reasonable estimation of the highest KD that can bemeasured by this method, we applied this fitting procedure to a set of

‘‘background’’ variants––i.e., variants on the chip lacking an RNAP initiation site. To normalize the bound fluorescence in the green

channel to a similar scale as those clusters that do transcribe RNA, the fluorescence values were divided by themedian fluorescence

value in the red channel across clusters that do have RNAP initiation sites. Background clusters were randomly assigned to a ‘‘variant

ID,’’ such that the set of ‘‘background variants’’ had a similar number of associated clusters as our librarymembers. Finally, fittingwas

carried out as described in ‘‘Applying common values forKD,NS, fmin, and fmax to refine estimates forKD,’’ with the variant-independent

values for fmin, fmax, and KD,NS applied. The reliable DG threshold determined by this analysis for PUM2 was approximately –8.5 kcal/

mol (Figure S1F), and only variants with DG values less than this threshold (corrected for active protein fraction) were included in the

high-confidence affinity data reported herein.
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Data filtering
Variants were included in our analyses if they met the following criteria (unless otherwise indicated): (1) observed DG values lower

than –8.5 kcal/mol; this range was established as clearly distinguishable from background of non-transcribed clusters (see Fitting

background clusters to determine maximum measurable DG in the Computational analyses section above); (2) five or more clusters

in at least one replicate experiment, to allow robust cluster statistics; in cases where one of the replicates contained fewer than five

clusters, only the DG value from the replicate with five or more clusters was used; (3) 95% bootstrap confidence interval of the DG

value (or the weighted error of replicate DG values for PUM2 measurements at 25�C) less than 1 kcal/mol; all 95% CI values were

corrected to account for inter-experimental error, as described in (Denny et al., 2018). The numbers of variants passing each filter

are indicated in Table S5.

Given the overall weaker binding ofmutant PUM1 and to allowmore comprehensive comparisons of single-mutant binding bywild-

type and mutant protein (Figure 5D), we relaxed the affinity filter for mutant PUM1 data. Rather than applying a DG < –8.5 threshold,

we included variants with at least 15% of RNA bound by PUM1 mutant at the highest probed protein concentration.

In comparisons of PUM2 replicate experiments (Figure 1D), and of PUM1 versus PUM2 affinities (Figure 5A), the entire oligonucle-

otide library was used, including sublibraries that will be fully addressed in future manuscripts. In these comparisons, an additional

filter was applied to exclude any oligonucleotides with more than one binding site, defined as two UGUA sites separated by at least

four bases.

Assessing reproducibility and combining experimental replicates
Two replicate experiments of PUM2 binding were combined by calculating the error-weighted mean:

DGcomb =

�
DG1

s2
1

+
DG2

s2
2

��
1

s2
1

+
1

s2
2

��1

(Eq. 8)

where the DG1 and DG2 are DG values from each replicate and s1 and s2 are 95% confidence intervals of the respective DG values.

Weighted propagated error was calculated as:

scomb =

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s2
1

+
1

s2
2

s !�1

(Eq. 9)

The observed small systematic offset (Figure 1E) was subtracted from Replicate 2 values before averaging to prevent distortions in

cases where a variant was only present in one replicate. The offset (0.28 kcal/mol) was derived from mean replicate difference be-

tween highest affinity variants (DG < –9.8 kcal/mol).

Assessing the significance of scaffold differences
The significance of single mutant scaffold differences before and after accounting for structure was assessed via a false discovery

rate (FDR) approach. For each single mutant and consensus sequence, the deviation of the DG value (weighted replicate average,

Equation 8) from the scaffold average (DGavg) was determined and converted into a z-score:

z=
DG--DGavg

sDG

(Eq. 10)

where s is the weighted replicate error (Equation 9). The distribution of resulting z-scores was then compared to a null distribution,

where the z-scores are normally distributed around a zero mean with a standard deviation of 1. For each z-score, the number of false

discoveries was determined from the probability of obtaining a value more extreme than this z-score given the null distribution (two

tailed; value = 2*CDF(–jzj)), multiplied by the total number of variants. The total number of discoveries corresponded to the sum of the

number of false discoveries (above) and the number of actual z-scores whose absolute values were greater than or equal to that

z-score threshold. Scaffold differences were considered significant if the respective z-score had FDR % 10%. Asterisks in Figures

2A, D and in Figure S2C indicate mutants where at least one scaffold showed a significant deviation from the scaffold mean.

To assess the contributions of RNA secondary structure to the scaffold variance, the above analysis was repeated using structure-

corrected affinities (see Accounting for RNA structure below; ‘Structure-corrected’ in Figures 2B, S2A), as well as affinities of variants

that lacked significant predicted structure (DGfold > –0.5 kcal/mol; 44 of 65 total variants, including the UGUAUAUA consensus).

Accounting for RNA structure
We used Vienna RNAfold (v. 2.1.9) (Lorenz et al., 2011) to predict ensemble stabilities for RNA structures in which the protein binding

site is accessible versus occluded due to base pairing (Figure 2C). The effect of accessibility on protein binding was defined as fol-

lows (see model in Figure S3B):

Kobs
D =KD 3

1+Kfold

1+Kfold;accessible

(Eq. 11)
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where Kobs
D is the measured dissociation constant, KD is the intrinsic dissociation constant (for accessible RNA), Kfold is the folding

equilibrium constant that represents the ensemble of RNAs that are structured (accessible + occluded) and Kfold,accessible is the

folding equilibrium constant representing RNA structures in which the protein binding site is accessible. Accessible binding sites

were defined as lacking base-pairing in the 8-mer core binding site (for the purpose of structure predictions) (Figure 2C). Folding equi-

librium constants were based on ensemble stabilities predicted by RNAfold (RNAfold -p0 -T 25Cor RNAfold -p0 -T 37C); stabilities of

accessible RNA structures were predicted by including the constraint flag (RNAfold -p0 -T 25 C -C) and constraining the 8-mer bind-

ing site to a single-stranded state, e.g.:

UCUCUUUGUAUAUAUCUCUU

......xxxxxxxx......,

where ‘x’ indicates unpaired residues. Structure effects were considered if they exceeded 0.5 kcal/mol, except as noted.

Assessing alternative binding registers in single mutant variants
To determine potential alternative binding registers in our single mutant constructs, we computationally scanned the full RNA

sequence (including scaffold and variable region) with the additive consecutive model, wherein the predicted relative affinity (ex-

pressed as DDG) at each 8-mer site corresponds to the sum of effects of each individual residue:

DDGpred =
X8

b= 1
DDGX

b (Eq. 12)

b is the position in the 8-mer RNA binding sequence and X is the identity of the residue at position b. The DDGX
b values were derived

from weighted scaffold averages for each single mutant relative to the weighted average of consensus affinities, after accounting for

structure effects as described in Accounting for RNA structure. In calculating the predicted affinities for each register, structure ef-

fects were estimated by individually constraining the respective 8-mer site to the single-stranded state.

Figure S2D,E and Table S1 show the results of the initial assessment of register shifting, based on scaffold averages of mutant

effects in the 5U background. No additional variants with shifted registers within less than 1 kcal/mol from the designed register

were identified when the analysis was repeated for single mutants across 5A/C/U backgrounds, using mutant effects averaged

across scaffolds and 5A/C/U backgrounds in Equation 12 (Figure S3A,B).

Development, testing and evaluation of thermodynamic binding models
To ensure the highest accuracy of model testing and global fitting, the library was filtered to only include variants without significant

predicted secondary structure (DGfold > –0.5 kcal/mol). For variants in the S1a and S1b scaffolds, we considered the ensemble struc-

ture of the entire RNA construct; for S2a and S2b scaffolds, only the stability of structures within the hairpin loop was considered, due

to the high stability of the stem. The ensemble stability of structures involving the loop region was determined as the difference be-

tween RNAfold-predicted stabilities with and without the loop region constrained to the single-stranded state (DGfold,loop = DGfold –

DGfold,ss). Only the loop sequences were used for binding predictions in global fitting.

To reduce potential systematic bias in the DDG values (DDG = DG – DGWT) that may affect the fit, we did the following. The DDG

values (observed and predicted) were defined relative to the UGUAUAUAU reference sequence rather than the slightly more stable

UGUAUAUAG sequence (Figures 2E, S2F), because UGUAUAUAU was more highly represented in our library and was predicted to

have less residual structure (n = 183 for DGfold > –0.2 kcal/mol). To determine the median consensus affinity, we applied the more

stringent structure cutoff of –0.2 kcal/mol (versus �0.5 kcal/mol) due to the greater, asymmetric spread of values observed when

the –0.5 kcal/mol threshold was used, consistent with residual structure effects. The variants used for global fitting and their affinities

and DDG values measured for PUM2, PUM1 and mutant PUM1 are indicated in Table S5.

Importantly, in testing and globally fitting the models below, we accounted for all possible binding modes and registers, because

the strongest binding can arise from a site downstream of or partially overlapping with the original designed site, and these altered

registers become more probable the larger the destabilization from mutations within the original consensus site (see Figure 4A). The

presence of multiple binding modes of similar affinity will also increase the overall observed affinity.

Testing the additive consecutivemodel.Additive consecutivemodel predictions were calculated using the equation in Figure 3A for

every 9-mer register in each oligonucleotide in the library, based on measured single mutant penalties (Table S2). The ensemble af-

finity for a given oligonucleotide was determined as illustrated in Figure 4A (‘Consecutive’; top left):

DDGensemble = � RTln
�Xn -- 8

r = 1
e
--DDGr

RT

�
(Eq. 13)

where n is the length of the oligonucleotide variant, r is the index of an individual 9-mer register, DDGr is the predicted penalty for

binding in register r, R is the gas constant and T is temperature (25�C).
For direct comparison of the performance of the additive consecutive and additive nonconsecutive models (with and without

coupling), data for all unstructured variants (n = 5206) were plotted in Figure 3A, including the single mutants (n = 113 across

the four scaffolds and 5A/C/U backgrounds); excluding the single mutants did not significantly alter the fit values (RMSE =

1.04 kcal/mol; R2 = 0.73).
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Global fitting to the additive consecutive model (Figure S4B,C) was performed as described in theGlobal fitting section below, us-

ing terms for bound residues only.

Base flipping analysis

For the initial assessment of the additive nonconsecutive model that permits base-flipping, we focused on oligonucleotides in our

library that contained C-insertions at various positions of the consensus sequence (UGUAUAUAU). For comparisons to the additive

consecutive model predictions in Figure 3C,D, we used variants without predicted register shifts to favorable sites involving flanking

sequences, as this allowed for the most accurate estimation of the lower limit of the flipping penalty at the indicated site. The

construct sequences used are indicated in Table S3.

Global fitting

To fit the final model (additive nonconsecutive with coupling; Figure 3F), theDDG values for all registers with no flips, all registers with

single flips, all registers with double flips, and all registers with two single nucleotide flips were included when computing the partition

function for binding (see Figure 4A). Registers with more than two flipped residues were not included in the partition function calcu-

lation because their predicted affinity was low enough that it minimally affected the overall binding affinity of the ensemble of bound

states. The DDG values for individual registers were used to compute the partition function and the overall DDG for the ensemble of

bound states for each RNA variant (DDGðensembleÞ = � RTlnðP e--DDGi=RTÞ, where i is the register number (Figure 4A)). This

ensemble DDGwas compared to the experimentally observed DDG values during fitting. The model assumed a single protein bound

to each RNA variant, which was supported by the tight distribution of fmax values and our ability to detect binding of multiple bound

protein monomers based on proportional increase in fluorescence (Figure S1E; Becker et al., 2019b, in preparation). The additive

consecutive and additive nonconsecutivemodels (Figure 3A,E) were fit analogously, but with the flipping and coupling terms (additive

consecutive model) or coupling terms (additive nonconsecutive) excluded from the model.

During fitting, the only values that were not allowed to vary were the bound parameters for the consensus ‘UGUAUAUAU’ residues,

which were set to a penalty of 0 kcal/mol. The other bound parameters for non-consensus residues were allowed to vary within the

higher of the 95% confidence interval determined from the individual single mutant measurements or ± 0.4 kcal/mol from the median

DDG values from the individual single mutantmeasurements (Figure 2E, Table S2). Single and double flip parameters were essentially

unconstrained during fitting and were allowed to vary between 0 and 7 kcal/mol. The coupling terms were constrained to between –4

and 0 kcal/mol. The coupling terms were included in both consecutive and flipped registers, with the condition that no flips interrup-

ted the series of flipped residues. The script used for global fitting can be found on https://github.com/pufmodel.

All models were initially trained on a randomly selected subset of half the data and tested on the remainder of the data to prevent

overfitting. In all cases, the model performed nearly identically on the training and test sets. To compute the final parameters, the

model was fit with all sequences meeting the structure cutoff. All models described in the text were fit by minimizing the sum of

the squared error between the predicted and measured DDG values for each sequence. To help ensure that the fit was finding a

global minimum, both the BFGS and differential evolution algorithms implemented in the lmfit module in Python were used for fitting.

Additionally, fits with flipping parameters were initialized to different values between 1 and 4 kcal/mol and led to the same fit param-

eters, providing additional support for convergence to a global minimum.

We assessed the stability of the final fit parameters (additive nonconsecutive including coupling model; Table 1, Figure 3F) by per-

forming multiple fits with bootstrapping and a parameter sensitivity analysis. Bootstrapping was performed as follows: the 5206

sequences were sampled with replacement and the model parameters were fit to each resampled dataset. The 95% confidence in-

tervals from the bootstrapping analysis are reported in Table S4. To examine how well bounded the model parameters were, we

computed the sensitivity of the RMSE of predicted versus observed affinities to variations in each individual parameter while holding

all others constant at their fit values (Figures S5, S6). Each value varied within the constraints that were applied during fitting. For

some flipping parameters, the sameRMSE value resulted from all parameter values greater than a given value, implying that for these

parameters the penalty must be larger than a certain value so that it will not occur in the most stable register in any of our constructs,

but because the parameter is so destabilizing we can only say that it must be at least as perturbative as theminimum value resulting in

a constant RMSE. As a result, we reported the lower bound for these parameters (Table 1, ‘Term II’).

Coupling analysis

To assess positional coupling, we tested double mutants of the UGUA[A/C/U]AUAU reference sequence for systematic deviations

from predictions by the additive consecutive model. To obtain the library variants for this analysis, we filtered our mutant library for all

sequences that featured a single dominant consecutive register (i.e., with less than twofold, or 0.4 kcal/mol, further stabilization pro-

vided by other consecutive or flipped registers, as predicted by the additive nonconsecutive model in Figure 3E). Variants deviating

from the consensus sequence at two positions were identified and their predicted affinities were calculated by adding the respective

experimentally determined single mutation penalties (DDGpred = DDG1 + DDG2; Figure 2E, Table S2). We used the experimentally

derived instead of globally fit single mutant penalties in this analysis, as coupling may affect the fit values. Qualitatively, the conclu-

sions were not affected by the fit parameters, as in both cases the strongest coupling was observed between positions 7 and 8, with

negligible deviations at other positions. Only double mutant combinations represented by more than one variant in our library were

considered. Deviations between the observed and predicted DDG value were determined and averaged across all mutants with mu-

tations at a given pair of positions (Figure S4D).

The double mutant analysis indicated coupling between mutated positions 7 and 8, with negligible deviations from additivity at

other positions for which data were available. Because of the highly destabilizing effects of mutations in the 50 half of the binding
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site, these mutations were strongly underrepresented among double mutants, as they generally lead to alternative registers being

preferred or fall outside the reliably measurable affinity range. For the same reasons, any couplings involving 50 mutations are unlikely

to be biologically relevant.

To determine the sequence dependence of position 7 and 8 couplings, including potential longer-range couplings, we next

extended the analysis to varying combinations of residues flanking each position 7 and 8 residue. Specifically, and recognizing

that coupling is most likely to occur between neighboring residues, we assessed the following combinations for systematic devia-

tions from predicted values: 1) residue of interest flanked by two consensus residues; 2) only the 50 neighboring base mutated; 3)

only the 30 neighboring base mutated; 4) both neighboring residues mutated. In this analysis, we included all variants that contained

the indicated combination in the best predicted consecutive register (as predicted by additive nonconsecutivemodel; Figure 3E); any

sequence was permitted outside the indicated combination.

Only 7G and 7C showed strong systematic deviations from predicted affinity for the indicated neighbor combinations (Fig-

ure S4E,F), and to a lesser extent––the 9G residue, which showed systematically tighter binding when preceded by the consensus

residue 8A as opposed to residue 8 mutations (Figure S4G). Further inspection of 7G coupling indicated an additional bifurcation

based on position 5 identity, indicating longer-range coupling (Figure S4E). The previously observed structural differences in purine

and pyrimidine recognition at position 5, with dramatic effects on backbone configuration and in some structures––on position 6

recognition provide a potential structural rationale for this longer-range coupling (Lu and Hall, 2011).

Analysis of in vivo crosslinking data
Determining a set of position weight matrices to find putative binding sites

The analysis of in vivo crosslinking data was carried out in two stages: first, we identified the transcriptome sites predicted to be

bound by PUM2 (DDGpred % 4 kcal/mol) by using a set of position weight matrices (PWMs) that approximate our thermodynamic

model to efficiently identify binding sites. Second, we applied the full thermodynamicmodel, as described in Figure 3F and Figure 4A,

to this set of putative binding sites. Using PWMs for genome-wide searches is supported with currently available software and can

computationally obtain matches to the whole transcriptome within a reasonable amount of time. In contrast, genome-wide applica-

tion of the full thermodynamic model was prohibitively computationally expensive.

Each PWM is a matrix with rows representing different positions within the binding sequence and columns representing the four

bases that could be at that position. The value of the PWM for each position and base is the probability of observing that base at that

position in a set of binding sequences, wherein the probability is proportional to the DDG terms from our thermodynamic model, as

detailed below: pi;j =
P

jexpðDDGi;j=RTÞ=expðDDGi;j=RTÞ for position i and base j. For the simplest binding configuration (i.e., 9 bound

positions with no flipped residues), DDGi,j values corresponded to the binding terms in Table 1 (DDGX
b; ‘Term I’). Each genomic

sequence was compared with the PWM to determine a log-odds score: s =
P

iIi;j logðpi;j=0:25Þ, where Ii;j = 1 if the sequence at

position i has base equal to j, otherwise Ii;j = 0. A log-odds score of R2 was found to capture the large majority of variants

with DDG < 4 kcal/mol, and so this value was applied as the threshold above which a sequence was considered as a putative

binding site.

To account for binding registers with a single flipped residue, a row was inserted at the flipped position, with values derived from

the base flipping penalties (DDGY
f , Table 1, ‘Term II’). Our thermodynamic model found that flipping is accommodated only in four

positions; thus, a PWMwas determined for each of these four binding registers. In practice, for a given sequence, flips between po-

sitions 4/5 and 5/6 had very similar PWMs, and so a single PWMwas derived to search for both of these binding configurations, using

the average values. On average, an inserted residue penalized the overall affinity by�1.5 kcal/mol. To account for this overall desta-

bilization, the threshold log-odds score for these three flipped PWMs was increased to 4 (i.e., a sequence had to have log odds

score R4 for the sequence to be considered as a putative binding site).

A set of four additional PWMs were derived to account for having two flipped residues at each of the four flipped positions. Once

again positions 4/5 and 5/6 produced very similar PWMs and were averaged, resulting in three distinct PWMs. For these PWMs, the

threshold for log-odds score was increased to 5 to account for the additional destabilization of having two flipped residues.

The PWM for no flipped residues and with one flipped residue had two or one fewer positions to account for, respectively, than the

PWM for two flipped residues. Thus, all PWMs were brought to the same length of 11 rows (corresponding to 11 bound or flipped

positions) by padding at the 30 end with rows that do not contribute to the log odds score of any sequence (values were set equal

to 0.25 for all bases).

Finally, these seven PWMs and their respective threshold values were saved in a single file, with format defined by the program

HOMER, as described: http://homer.ucsd.edu/homer/motif/creatingCustomMotifs.html.

Determining binding sites within the transcriptome

The seven PWMs described above were used to determine putative binding sites across the transcriptome for subsequent quanti-

tative analysis with our full thermodynamic model. Initially, a set of genome locations was determined from the Gencode v24 anno-

tation file, obtained from the ENCODE project:

wget https://www.encodeproject.org/files/gencode.v24.primary_assembly.annotation/@@download/gencode.v24.primary_

assembly.annotation.gtf.gz.
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These genome annotations were converted to a bed file format, and any overlapping regions weremerged, using the program bed-

tools merge (v2.25.0). The package HOMER (v4.8.3) was used to search for matches to the PWMs within these genome locations,

with the command:

annotatePeaks.pl ${genome_locations} hg38 -m ${pwm_file} -mbed {output_motif_locations} -noann -nogene.

The set of output motif locations, corresponding to putative binding sites, was subsequently filtered to remove any overlapping

regions (bedtools merge), and if two regions overlapped, only the site with the lowest log odds score was kept. This set of motif sites

was annotated again using HOMER to map each site to a gene, mRNA location (i.e., 50 UTR, CDS, 30 UTR), and gene type (i.e., pro-

tein-coding, noncoding RNA, etc.), each of which come from the default Refseq annotations for human genome assembly GRCh38

(hg38) (O’Leary et al., 2016).

annotatePeaks.pl ${motif_locations} hg38 > ${output_annotations}

These annotations were used to filter motif locations based on: (1) Being part of a protein-coding gene in the 50 UTR, CDS, 30 UTR;
(2) Being on the same strand as its annotated gene. This filtering resulted in a final set of 640,675 bindingmotif locations aroundwhich

PUM2 binding was assessed.

In addition to this set of filtered motif locations, a set of ‘‘random’’ sites were determined, which served as controls throughout.

These sites were obtained by choosing 5,000,000 random start sites within the original set of genome locations. These random sites

spanned the same number of nucleotides as the putative binding sites (11 nt). These 5million sites were subsequently annotated and

filtered exactly as the putative binding sites were, resulting in 76,137 ‘‘random’’ locations.

Using the thermodynamic model to predict DDG values of each putative binding site

The 11-nt sequence of all motif locations (‘‘binding’’ or ‘‘random’’) were each assessed for their predicted DDG using the full thermo-

dynamic model (Figure 4A; 37�C). The sequence within each motif location was determined using the bedtools getfasta command

and the hg38 genome build in fasta format.

This 11-nt window has three possible binding registers if no residues are flipped (DDGconsecutive,1,DDGconsecutive,2,DDGconsecutive,3),

in addition to other binding registers with one or two residues flipped (see Figure 4A). Each sequence was also assessed for the

DDGnoflip, which represents the ensemble energy of the three DDGconsecutive values, with no contribution from any of the flipped bind-

ing registers.

Determining expression of putative PUM2 binding sites

RNA-seq expression data for K562 cell lines was obtained from the ENCODE project (Consortium, 2012). These data consisted

of transcript-per-million (TPM) values for each ENSEMBL transcript across two replicates (https://www.encodeproject.org/

files/ENCFF272HJP/@@download/ENCFF272HJP.tsv and https://www.encodeproject.org/files/ENCFF471SEN/@@download/

ENCFF471SEN.tsv). The TPMvalues for each transcript were averaged across the two replicates, and the value for each Refseq tran-

script identifier was then determined using Ensembl Biomart for hg38. The TPM value for each Refseq transcript gave the relative

expression of motif sites within that transcript, as assessed using the annotations from HOMER described above.

Onlymotif sites on transcribed genes (TPM> 0 in K562) were included in certain subsequent analyses, resulting in further filtering of

the number of motif sites examined to 396,578 total sites.

Obtaining eCLIP signal around putative PUM2 binding sites

Enhanced UV crosslinking and immunoprecipitation (eCLIP) data for PUM2 protein in human K562 cells was obtained from ENCODE

(Van Nostrand et al., 2016). Sequencing read alignments (in the form of a BAM file) were obtained for two replicate pulldown

samples and one input sample which did not undergo antibody pulldown for PUM2 but was otherwise experimentally processed

identically (https://www.encodeproject.org/files/ENCFF786ZZB/@@download/ENCFF786ZZB.bam, https://www.encodeproject.

org/files/ENCFF732EQX/@@download/ENCFF732EQX.bam, https://www.encodeproject.org/files/ENCFF231WHF/@@download/

ENCFF231WHF.bam). The published eCLIP data had already been processed to exclude PCR duplicates by collapsing sequencing

reads with identical barcodes (Van Nostrand et al., 2016). Only alignments corresponding to the second sequencing read (read2)

were kept, as the 50 end of this read corresponds to the nucleotide immediately following the putative crosslinking site (Van Nostrand

et al., 2016). The alignments were obtained using the package samtools (version 0.1.19-96b5f2294a):

samtools view -bh -f 128 ${input_bam} > ${output_R2_bam}

This set of filtered alignments was used to determine the number of observed crosslinks (i.e., read2 start sites) on each strand at

any position within the genome, using the package bedtools:

bedtools genomecov -ibam {R2_bam} -strand + -bg �5 > {output_bedgraph_plus}

bedtools genomecov -ibam {R2_bam} -strand - -bg �5 > {output_bedgraph_minus}

The number of crosslink sites (from eCLIP data) at each nucleotide position within each motif location was determined using the

package pyatac ins (https://nucleoatac.readthedocs.io/en/latest/pyatac/). Only crosslink sites on the same strand as the motif were

included in the total count. The number of reads starting 55 nt upstream and extending to 25 nt downstream of the motif location

center (80 nt total; Figure S7L) were summed for each sample, corresponding to the motif site’s eCLIP read count; this window

accounted for the asymmetrical observed distribution of crosslink sites around PUM2 consensus motifs. eCLIP signal for each motif

site was determined as the sum of eCLIP read count for the two replicates, divided by the relative expression of that motif site.

Similarly, eCLIP input for each motif site was the eCLIP read count for the input sample, divided by the relative expression of that

motif site.
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The median eCLIP signal and input around sites identified as ‘background’ sites was determined from sites with predicted DDG >

4.5 kcal/mol, regardless of whether the site originated from the ‘‘binding’’ or ‘‘random’’ motif locations. The eCLIP signal (or input)

values were divided by the ‘background’ signal (or input) value to obtain the eCLIP signal (or input) enrichment above the background

expectation.

To assess the eCLIP occupancies of sites with and without flipped residues (Figure 6B), sites were defined as containing flipped

residues if their predicted DDG value using the full thermodynamic model (Figure 3F) was lower than the DDG value predicted by the

additive consecutive model by more than 0.5 kcal/mol.

While the eCLIP data (Van Nostrand et al., 2016) enabled us to perform initial tests of thermodynamic predictions for PUM2 in vivo,

future tests will be needed to assess factors that lead to occupancy variation at the level of individual RNAs and to confidently distin-

guish variation caused by biological factors versus technical artifacts (Wheeler et al., 2018). Whereas median eCLIP occupancies are

well predicted by thermodynamics, there is wide variation in eCLIP read coverage between sites of identical sequence or predicted

affinity (Figure S7M), either because of crosslinking bias or yet-to-be-identified biological andmethodological factors. Improvements

in individual-RNA signal intensity and quantitative controls will allow dissection of these factors.

Assessing secondary structure around motif sites

Consensus motif sites (DDGpred < 0.5 kcal/mol), comprising 4,816 non-overlapping sites, were assessed for local secondary struc-

ture occluding the binding site. The sequence around each motif site was determined using bedtools getfasta. Multiple different

lengths of flanking regions were included in this assessment (10 nt, 20 nt, or 80 nt on either side of the motif site). An additional

line within the sequence fasta file gives the constraint that the binding site (i.e., the first 8 nt of themotif site, given theweak interaction

at position 9) remains unpaired. Using the program RNAfold (v2.1.8 (Lorenz et al., 2011)), the ensemble energy was determined for

each sequence:

cat ${input_fasta} j RNAfold–noPS -p0 -C -T37 > ${output_values_wconstraint}

cat ${input_fasta} j RNAfold–noPS -p0 -T37 > ${output_values_noconstraint}

The difference in ensemble free energy with and without the constraint gives the accessibility of that site: DDGss = DGno_constraint –

DGconstraint (see also Accounting for RNA structure above). Note that the thermodynamic linkage between RNA folding and RBP bind-

ing, depicted in Figure 2C, applies fundamentally to any RBP, as the effects of RNA structure on binding only depend on the relative

free energies of the accessible and occluded RNA states (see, e.g., (Hackerm€uller et al., 2005; Li et al., 2010; Taliaferro et al., 2016) for

examples of structure effects on other RBPs). Thus, the weaker than predicted structure effects on PUM2 binding in vivomust reflect

cellular factors that destabilize RNA structure, rather than properties specific to PUM2. Current limitations of eCLIP-based structure

analysis include that, in the presented case, the analysis only provides insight into local structural context around PUM2 sites (i.e.,

cytosolic and primarily located in 30UTRs), under the conditions of an eCLIP experiment; further, the analysis relies on structural pre-

dictions by nearest-neighbor algorithms, which have limited accuracy (Becker et al., 2019a).

Enrichment of PUM2 sites within 30UTRs
Sites derived from the PUM2 PWMs (described in Analysis of in vivo crosslinking data above; not filtered for being expressed in K562

cells) were divided into bins based on the predicted DDG, and the fraction of motifs within each bin that were annotated as 50 UTR,
CDS, or 30 UTR was determined as described above (i.e., using HOMER), and are shown in Figure 6D. Enrichment for transcript an-

notations of motif sites (Figure 6E) was determined relative to the annotation frequencies of ‘‘random’’ locations.

Modeling the cellular PUM2 binding landscape
To assess the distribution of PUM2 across cellular RNA sites, we determined the numbers of each 9-mer, 10-mer and 11-mer

sequence in the human transcriptome (representing consecutive sites and sites containing one or two flipped residues). For

simplicity, here we assumed equal expression of all protein-coding transcripts, with sequences obtained from GENCODE (genome

release GRCh38.p12; ‘Protein-coding transcript sequences’ fasta file) (Harrow et al., 2012). Absolute numbers of each binding site

were determined by normalizing the nucleotide count in the above transcriptome file to match the estimated mRNA nucleotide count

in a single human cell (8.9 3 108 nucleotides, corresponding to �0.5 pg mRNA per cell) (Livesey, 2003; Marinov et al., 2014; Tang

et al., 2011). These numbers can be adjusted to account for cell-specific variation in total mRNA levels and differential expression

based on publicly available RNaseq data (Consortium, 2012).

The number of PUM2molecules per cell was estimated at 10,000, based on published numbers of 2,000 and 18,000 in HCT116 and

HeLa cells, respectively (Lee et al., 2016; Nagaraj et al., 2011).

To calculate the distribution of cellular protein bound across the different mRNA sequences, we first calculated PUM2 relative

affinities for each 9–11-mer site using our thermodynamic model. The affinities for consecutive 9-mer sites were calculated using

the binding and coupling terms in Table 1; to determine affinities for sites containing flipped residues, we calculated the ensemble

affinities of the four possible registers with one single-nucleotide flip (Figure 4A; 10-mer sites); and the ensemble of the four

possible registers with a two-nucleotide flip and six possible registers of two single-nucleotide flips (11-mer sites), using the terms

in Table 1.
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PUM2 occupancies for each RNA species were calculated using an equilibrium competition model, where the occupancy of a

given RNA species (P∙Ri) is a function of protein abundance (P), and the affinities and abundances of all RNA (R) sites:

P+R1#
K1

P$R1

P+R2#
K2

P$R2

$$$

P+Rn#
Kn

P$Rn:

The fraction of total protein bound to RNA sequence R1 equals:

½P,R1�
½P�total

=
K1½P�½R1�

½P�+K1½P�½R1�+K2½P�½R2�+.+Kn½P�½Rn�=
K1½R1�

1+K1½R1�+K2½R2�+.+Kn½Rn�=
K1½R1�

1 +
Xn

i= 1
Ki½Ri�

(Eq. 14)

We used affinities predicted for each RNA by our thermodynamic model:

Ki = e--DGi=RT (Eq. 15)

where DGi = DGWT + DDGi; DGWT is the measured affinity for the UGUAUAUAU reference sequence at 37�C (–12.1 kcal/mol), and

DDGi is the relative free energy for binding to sequence Ri (DDGi) predicted by our thermodynamic model.

To convert the sequence counts into concentrations, we used the cell volume of 10�12 L (Fujioka et al., 2006). Given the much

greater number of RNA sites than the number of cellular PUM2 molecules (78,000 consensus UGUA[ACU]AUAN sites alone versus

10,000 PUM2 molecules), we assume that most RNA sites are unbound, i.e., that [Ri]z[Ri]total. [This assumption will not hold at very

high protein concentrations or for certain RBPs with very high specificity; these alternate regimes can be readily simulated using

KinTek Explorer or similar software (Johnson et al., 2009).]

The occupancies plotted in Figure 6H correspond to the amount of PUM2 bound to each RNA species (i.e., fractional protein oc-

cupancy from Equation 14 multiplied by the total amount of protein):

½P,R1�= ½P�total 3
K1½R1�

1+
Xn

i= 1
Ki½Ri�

(Eq. 16)

Concentrations of occupied sites were converted into the number of protein-bound sequences as follows: [P,R1]3NA3 Vcell, where

NA is Avogadro’s number and Vcell is the cell volume.

The bars in Figure 6Hdenote the sumof occupancies for all 9-mer RNA species containing the indicated numbers of nonconsensus

residues (blue) and 10–11-mer species with flipped residues (green).

Fractional occupancies of each RNA sequence were determined (using the definition of the amount of bound RNA from Equa-

tion 14), as follows:

½P,R1�
½R1�total

=
½P�total 3K1½R1�

½R1�total3
�
1+
Xn

i= 1
Ki½Ri�

�z ½P�total 3K1

1+
Xn

i= 1
Ki½Ri�

(Eq. 17)

The fractional occupancy of consensus sequences calculated using Equation 17 and the published cellular amounts of PUM2 and

mRNA (see above) was 3.4%.We emphasize that these binding predictions are based on ‘typical’ expression levels, which suggest a

large excess of consensus RNA sites over the cellular PUM2 level and over the KD. As a result, none of the RNA sites are predicted to

be saturated with PUM2 and the occupancies should linearly scale with predicted affinity; this concentration regime is supported by

the linear relationship between predicted affinities and eCLIP occupancies (Figure 6A). Nonetheless, given the changes in PUM1 and

PUM2 expression across tissues and during development (reviewed in (Goldstrohm et al., 2018)), as well as cellular changes in

expression and accessibility of RNA, PUM1 and PUM2 expression may in some cell types reach saturating levels. This saturating

binding to consensus sites would lead to poorer discrimination between consensus and nonconsensus sites and an even greater

fraction of PUM2 being bound to nonconsensus sites (not shown).

Occupancy prediction algorithm
A script for predicting PUM2 occupancy on any RNA sequence (see Figure 6G) can be found on https://github.com/pufmodel. The

script accepts any RNA sequence in fasta format and predicts PUM2 occupancies relative to the UGUAUAUAU consensus at each

site along the sequence based on our thermodynamic model. The algorithm currently assumes a linear relationship between affinity

and occupancy, as explained above in Modeling the cellular PUM2 binding landscape, as we do not expect saturating binding in vivo

in the presence of the large excess of tight RNA binding sites over cellular protein. Currently the script provides normalized occu-

pancies relative to the consensus sequence; to determine fractional RNA occupancies within the cell, experimental PUM2 and

RNA concentrations will need to be considered. The fractional occupancies in the example shown in Figure 6G have been calculated

based on our landscape model and the estimated amounts of PUM2 and mRNA in a typical cell (see Modeling the cellular PUM2

binding landscape).
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Predicting PUM1 and PUM2-mediated regulation
To assess how predicted PUM1 and PUM2 occupancies related to regulation of mRNA abundance, we analyzed a previously pub-

lished dataset that measured gene expression changes in response to simultaneous siRNA knockdown of PUM1 and PUM2 in hu-

man HEK293 cells (Bohn et al., 2018). This study labeled each gene as significantly upregulated, downregulated, or unchanged

(Table S4 of (Bohn et al., 2018); 19219 genes total). Different entries with the same gene name were aggregated by only keeping

the first entry with that gene name (19135 genes). Predicted relative occupancies were determined by identifying all putative

PUM2 binding sites within the 30 UTR, CDS and 50 UTR regions of each mRNA (using labels from Determining binding sites within

the transcriptome in the Analysis of in vivo crosslinking data section) and integrating the occupancies across all sites in a given region:

Relative occupancy=
XN

i
e�DDGi=RT (Eq. 18)

Here, occupancy is calculated relative to the UGUAUAUAU consensus, and assumes subsaturating binding (see Modeling the

cellular PUM2 binding landscape). Genes with no putative PUM2 binding sites in any part of the mRNAwere not included in the anal-

ysis (n = 3886).

To assess if PUM1 and PUM2 binding to different mRNA regions contributed differently to the regulation of mRNA expression,

Receiver Operating Characteristic (ROC) plots were generated (Figure S7E). The true positive and false positive rates were assessed

for each predicted occupancy value; predicted positives were those genes with occupancy greater than or equal to that occupancy

value within the indicated region (30 UTR versus CDS/50 UTR), and true positives were those that were significantly upregulated with

PUM1 and PUM2 depletion (i.e., repressed by PUM1 and PUM2).

To compare the thermodynamics-based predictions to those based on eCLIP data in K562 cells, two additional ROC plots were

generated, in which predicted positives are those genes with 1) at least a certain number of eCLIP peaks, or 2) at least a certain num-

ber of eCLIP reads, normalized for expression in K562 cells. Each is described in more detail below.

To determine if the number of eCLIP peaks in the 30 UTR region was predictive of regulation, the two replicate datasets of PUM2

eCLIP peak locations were downloaded from ENCODE, concatenated and sorted Van Nostrand et al., 2016. HOMER was used to

identify the gene and region associated with each peak (i.e., intron, exon, 30 UTR, etc.). Genes with no peaks were included in the

analysis.

To determine if the number of eCLIP reads per 30 UTR was predictive of regulation, eCLIP reads were summed within any putative

binding site of a gene’s 30 UTR, as described in the Analysis of in vivo crosslinking data section (Obtaining eCLIP signal around pu-

tative PUM2 binding sites). The reads in each of the two eCLIP replicates were summed, and the number of eCLIP reads per 30UTR
was divided by the expression of that gene in K562 cells (in TPM, as described in Analysis of in vivo crosslinking data (Determining

expression of putative PUM2 binding sites). Genes with no associated putative PUM2 binding site were not included in the analysis.

The number of normalizedCLIP reads per genewas shown to be amoderate predictor of the gene expression changewith PUM1 and

PUM2 knockdown, comparable to thermodynamics-based predictions (Figure S7F). Note that eCLIP and PUM1 and PUM2 knock-

down experiments were performed in different cell types (K562 and HEK293, respectively), which may affect these comparisons.

RNA Bind-n-Seq analysis
To independently test the thermodynamic model using a large dataset of sequences not present in our library, we analyzed enrich-

ments of all 11-mer sequences in the publicly available RNA Bind-n-Seq (RBNS) dataset for human PUM1 (Consortium, 2012; Dom-

inguez et al., 2018). We focused on the data for the lowest PUM1 concentration, 5 nM, which provided the greatest dynamic range of

enrichments over the no–protein input. Analysis of data obtained at higher PUM1 concentrations (20–1300 nM) indicated declining

enrichments for representative single mutants, suggesting saturating PUM1 binding at the low RBNS experimental temperature of

4�C. Enrichments of 11-mer sequences were calculated over the no-PUM1 input as follows:

Enrichmenti =
frequency of 11merið5 nM PUM1Þ

frequency of 11meriðinputÞ (Eq. 19)

where frequency indicates the number of occurrences of each 11-mer in the dataset divided by the total number of 11mers in the

dataset. 99.98% of all possible 11mers (n = 4,193,377) were represented in both input and PUM1 samples.

The log10 enrichments were compared to the relative affinities predicted for each 11-mer sequence by our thermodynamic model

at 4�C (Figure 4A). Analysis of median enrichments across 0.5 kcal/mol bins revealed above-background enrichments for 11-mer

sequences with predicted DDG values of up to 3.5 kcal/mol. Thus, further quantitative comparisons were based on 11mers within

this range (Figure S7D).

To compare the performance of the thermodynamic model for 11mers that were versus were not present in our RNA-MaP library,

we calculated the coefficients of determination (R2) between predicted DDG values and log10 RBNS enrichments for each set. The

RNA-MaP variants were defined as those 11mers that were present in the set of the 5206 unstructured library variants used for global

fitting of the thermodynamic model. Given the non-uniform distribution of 11mers across the affinity bins (e.g., 50.3% of the RBNS

11mers with DDGpred % 3.5 kcal/mol were in the 3.0–3.5 kcal/mol bin, while the RNA-MaP variants were distributed more evenly;

Table S6), we randomly subsampled the data to have the same number of 11mers in each DDGpred bin (bin size: 0.5 kcal/mol).

The sample size (n = 101) corresponded to the number of variants in the bin with the fewest variants. 100 rounds of random
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subsampling were performed using the pandas DataFrame.sample() function. The median and bootstrapped 95% confidence inter-

vals of the resulting R2 values were determined using the Python modules scipy.stats and scikits.bootstrap. The bootstrapped 95%

confidence intervals were [0.737, 0.743] and [0.747, 0.754] for 11mers that were or were not present in our RNA-MaP library,

respectively.

While the RBNS analysis allowed us to assess the performance of the thermodynamic model beyond the library tested by RNA-

MaP, there are critical experimental differences that contribute to the observed significant spread between predicted affinities and

observed RBNS enrichments. For example, RBNS was performed at 4�C, using long, 65 nt oligonucleotides that are predicted by

Vienna RNAfold to form stable structures, and enrichment is expected to be biased against highly structured sequences. Inspection

of variants that were systematically less enriched than predicted by thermodynamics revealed that these were dominated by 11mers

containing multiple G residues.

In addition to stabilizing RNA structure, the low temperature (4�C)may preclude equilibration in the course of the 2 h experiment, by

slowing PUM1 dissociation. (E.g., measurements of PUM2 dissociation from the consensus sequence at 0�C indicate a dissociation

half-life of 20 h (Vaidyanathan et al., 2017).) Another key limitation is that RBNS is a disruptive technique, and the washing steps that

follow the PUM1-RNA incubation may perturb binding equilibria.

11mers that displayed high enrichment values despite low predicted affinities could be explained by partially overlapping

consensus sites present in the same RBNS oligonucleotide. This was supported by a strong enrichment for partial consensus

sites among these highly enriched 11mers. E.g., comparison of sequences of 11mers that had predicted DDG values greater than

2.5 kcal/mol, and that were versus were not enriched >10-fold over input (Figure S7D) revealed that 13.7% of variants with >10-

fold enrichment contained the NNNNUGUA[ACU]AU sequence and 20.4% contained the NNNNNUGUA[ACU]A sequence. In

contrast, only 0.0030% and 0.050% of sequences with enrichment of <10-fold contained these partial consensus sites. While alter-

native binding sites within the same RNA oligonucleotide are straightforward to account for in RNA-MaP analysis, accounting for

neighboring sites in RBNS data is time- and computationally intensive Lambert et al., 2014. Given the above limitations of available

RBNS data for PUM1, this analysis was omitted herein.

DATA AND SOFTWARE AVAILABILITY

Thermodynamic binding data generated in this study are available for download (Table S5).

Key scripts for analyses reported herein have been deposited to github, as indicated in the Key Resources Table.
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