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Structured RNAs and RNA complexes underlie biological processes
ranging from control of gene expression to protein translation.
Approximately 50% of nucleotides within known structured RNAs
are folded intoWatson–Crick (WC) base pairs, and sequence changes
that preserve these pairs are typically assumed to preserve higher-
order RNA structure and binding of macromolecule partners. Here,
we report that indirect effects of the helix sequence on RNA tertiary
stability are, in fact, significant but are nevertheless predictable from
a simple computational model called RNAMake-ΔΔG. When tested
through the RNA on a massively parallel array (RNA-MaP) experi-
mental platform, blind predictions for >1500 variants of the tectoRNA
heterodimer model system achieve high accuracy (rmsd 0.34 and
0.77 kcal/mol for sequence and length changes, respectively). Detailed
comparison of predictions to experiments support a microscopic picture
of how helix sequence changes subtly modulate conformational fluc-
tuations at each base-pair step, which accumulate to impact RNA ter-
tiary structure stability. Our study reveals a previously overlooked
phenomenon in RNA structure formation and provides a framework
of computation and experiment for understanding helix conforma-
tional preferences and their impact across biological RNA and RNA-
protein assemblies.
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Structured RNAs perform a wealth of essential biological
functions, including the catalysis of peptide bond formation,

gene expression regulation, and genome maintenance. In each
case, the RNA folds into a complex 3D structure whose ther-
modynamics governs its function (1–5). Interrogation of the
folding process has yielded a general picture in which the RNA
structure generally forms hierarchically, first through the for-
mation of Watson–Crick (WC) double helices—the RNA sec-
ondary structure—and then through assembly of these helices
through non-WC interactions into tertiary structures (6–8). Ex-
tensive in vitro measurements have enabled a thermodynamic
model that can generally predict the RNA secondary structure
from the RNA sequence (9, 10). However, no thermodynamic
model exists to predict tertiary structure formation from a sec-
ondary structure, even though this final step is fundamental to
RNA function.
Understanding RNA tertiary structure requires methods to

predict possible 3D structures and to estimate their relative en-
ergetics; both steps require careful accounting of the geometric
preferences and flexibility of the individual elements that com-
pose the RNA (6–8, 11–14). In recent years, the major focus of
RNA modeling groups has been outside canonical base-paired
helices and instead on noncanonical motifs, such as structured
junctions and tertiary contacts, which are the hallmarks of
complex tertiary structure (11–13, 15–20). Nevertheless, within
structured RNAs, over 50% of residues are still contained within

WC base-paired helices (21), implying that even subtle confor-
mational variation in WC base pairs (as observed in refs. 22–24)
might accumulate to substantially influence tertiary structure
folding. Several lines of evidence suggest that such sequence-
dependent conformational variations in RNA helices could ex-
ist. Depending on their sequences, RNA helices have different
mechanical properties (22) and distinct chemical shift profiles as
determined by NMR (25). In addition, there is extensive work on
sequence-dependent conformational preferences of nucleic acid
helices in the related field of DNA-protein assembly. Such
preferences underlie "indirect readout" effects in which sequence
changes in double helix segments in between, but not directly at,
protein-DNA contacts can change DNA-protein binding affini-
ties by up to 200-fold (3 kcal/mol at 37 °C), and modeling studies
that explicitly consider conformational ensembles can partially
reproduce these data (26–28). For RNA tertiary structure, analogous
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changes in RNA double helix conformational ensembles in
between, but not directly at, tertiary contacts could impact the
stability of RNA tertiary structure assemblies (27, 29). However,
such effects have not yet been tested, partially due to the difficulty
of separating out such effects from other complicating factors in
RNA structure formation, including possible changes in secondary
structure, the typical presence of multiple tertiary contacts, and the
involvement of single-stranded RNA regions.
Overcoming these difficulties, the tectoRNA model system

involves binding 2 RNA pieces with well-defined secondary
structures through 2 well-understood tetraloop/receptor tertiary
contacts that are connected by 10 base-pair helices (Fig. 1A) (30–
32). We recently reported that the tectoRNA is amenable to
quantitative experiments involving thousands of distinct variants
through the RNA-MaP technology (14, 33). Here, we describe
how serendipitous early observations of helix-dependent effects
in tectoRNA RNA-MaP measurements led us to develop a com-
putational method that models the sequence-dependent confor-
mations of WC base-pair steps and uses these conformations
to quantitatively predict the energetics of the tertiary assembly.
Computational simulations generated blind predictions of

the relative affinity of all possible helix sequence variants of
one piece of the tectoRNA heterodimer (>105 predictions).
We then measured >1500 of these previously uncharacterized
tectoRNA variants, including comprehensive changes in base-
pair sequence and length of 1 helix. Our results establish that
sequence- and length-dependent conformational effects of helical
elements influence the thermodynamic stability of tertiary struc-
tures over unexpectedly wide ranges of 40-fold and 2,000-fold,
respectively, and that these effects can be predicted with high
accuracy.

Results
High-Throughput Platform to Measure Thermodynamic Stability of
TectoRNAs. Our model system is shown in Fig. 1A. Each piece
of the tectoRNA heterodimer is composed of a 10-bp RNA helix
flanked by a tetraloop (TL) and by a tetraloop receptor (TLR)
(30). The TL of 1 monomer binds selectively to the TLR of the
other monomer, forming 2 tertiary contacts that stabilize the
heterodimer (Fig. 1A). Suboptimal positioning of the 2 tertiary
contact interfaces by the intervening helices destabilizes the
heterodimer (32, 34). The tectoRNA system is thus sensitive to
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Fig. 1. Free energy of tectoRNA binding depends on helix sequence. (A) Structure of tectoRNA homodimer [Protein Data Bank (PDB): 2ADT] with 2 tertiary
contacts (GAAA-11nt). One of these tertiary contacts is replaced (GGAA-R1; blue) to convert the complex to the heterodimer used in this study (32). On the
right is the sequence and secondary structure of the wild-type tectoRNA interaction. Numbers indicate the “position” within the chip-piece helix. (B) In our
experimental setup, one piece of the heterodimer was fluorescently labeled and free in solution (the “flow piece”), while the other was immobilized on the
surface of a sequencing chip (chip piece). Quantification of the bound flow piece to the chip surface allowed determination of the free energy of binding (ΔG)
to form the bound tectoRNA. (C) Free energy of binding of the flow piece to 7 distinct chip-piece variants. Error bars are 95% CI on the measured ΔG. The
sequence of the flow- and chip-piece helices is indicated (Bottom).
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the conformational preferences of RNA helices and provides a
quantitative thermodynamic readout in the form of heterodimer
binding affinity.
A library of sequence variants of one piece of the tectoRNA

heterodimer was designed, synthesized, and sequenced (Fig. 1B
and SI Appendix, Fig. S1A). We leveraged a modified sequencing
platform to in situ transcribe the library into RNA directly on the
surface of the sequencing chip (Methods), enabling the display of
sequence-identified clusters of RNA (SI Appendix, Fig. S1B)
(33). This piece of the tectoRNA heterodimer was thus called
the chip piece. The binding partner of the chip piece (the flow
piece) was fluorescently labeled and introduced to the sequencing
chip flow cell at a series of increasing concentrations, and the
amount of bound fluorescence to each cluster of RNA was
quantified after equilibration (Methods). These fluorescence val-
ues were used to derive the affinity of the flow piece to each chip
piece variant in terms of the equilibrium dissociation constant

(Kd) and binding free energy (ΔG = RT log Kd). Values for ΔG
obtained in 2 independent experiments were highly reproducible
(R2 = 0.92; rmsd = 0.15 kcal/mol; SI Appendix, Fig. S2A). Each
chip piece variant was present in multiple locations per chip (n ≥
5), allowing estimation of confidence intervals for each affinity
measurement [median uncertainty on ΔG = 0.16 kcal/mol (95%
CI); SI Appendix, Fig. S2B]. In previously tested systems, RNA-MaP
measurements correspond directly to gel-shift assays (33, 35), and
the binding affinities for the tectoRNA are similar to those mea-
sured for the original constructs (4 nM for the 10-bp heterodimer
measured in ref. 32 compared with 6–30 nM measured for 10-bp
heterodimers in our experiment) (32).
A preliminary experiment measured 7 chip-piece RNA vari-

ants with different arbitrarily chosen WC base-pair compositions.
We observed a 5-fold range of binding affinities (1 kcal/mol; Fig.
1C), contrary to our initial expectation that these assemblies
would have the same affinity and thereby act as controls. The
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serendipitous observation of these affinity differences inspired
the development of a computational model (described below) to
relate helix structure to tectoRNA stability, based on structural
differences between WC base pairs.

Conformational Ensembles of RNA Helices Predict TectoRNA Stability
in RNAMake-ΔΔG. We developed a computational model for
tectoRNA stability that explicitly models the conformational
ensemble for each RNA helix sequence, i.e., the distribution of
conformations that the unconstrained helix explores in solution.
Inspired by previous modeling procedures pioneered by Olson
and colleagues (see refs. 22 and 36), we divided each helix into a
set of base-pair steps (i.e., 2 sequential base pairs) (Fig. 2A).
Decomposition of helices in this manner allows for modeling of
arbitrary helix sequences using a minimal set of structural states.
Base-pair step conformational ensembles were determined by
compiling all instances of that base-pair step in structured RNAs
from the RNA crystal structure database (Fig. 2A, Right and
Methods) (22, 37–39). These base-pair step structures were then
clustered based on structural similarity to form a set of 50–250
discrete conformational states, each weighted according to its
frequency (Methods and SI Appendix, Table S1).
Modeling the tectoRNA additionally required structures for

each of the TL/TLR tertiary contacts, which we modeled as single
structural conformations, as this type of tertiary contact appears
nearly structurally identical across all extant crystallographic
structures (40). These conformations were derived from a crystal
structure and Rosetta modeling (41) for the GAAA-11nt and
GGAA-R1 TL/TLR interactions, respectively (see Methods).
With this model we generated the “unconstrained” tectoRNA—

i.e., the intermediate state of tectoRNA binding where only a
single tertiary contact is formed (Fig. 2A). In this unconstrained
state, the helices explore their full sterically allowed conforma-
tional ensembles and occasionally bring the loop and receptor of
the second tertiary contact in close enough proximity to form the
closed tectoRNA assembly (Fig. 2B). We sampled conformations
explored by the unconstrained tectoRNA with a Monte Carlo
simulation by swapping the conformation of one randomly
chosen base-pair step per simulation iteration. Each sampled
conformation of the tectoRNA was assessed for whether the
closing base pair of the unbound TL was in close proximity to its
position in the bound TL/TLR (Fig. 2B), based on a proximity
threshold of 5 Å and a rotational alignment term (see Methods
and refinement below), to define whether the structure was
closed with both contacts formed (bound) or not (unbound) (Fig.
2B). This assessment was used to calculate the free energy of
conformational alignment of the tertiary contacts,

ΔGconf =−RT   logðNbound=NunboundÞ,

where T is the temperature, R is the universal gas constant, and
Nbound and Nunbound are the number of simulated structures an-
notated as bound or unbound, respectively. We attributed differences
in binding affinity between any 2 tectoRNA variants (ΔΔGbinding) to
differences in this conformational alignment term,

ΔΔGbinding =ΔGconf,2 −ΔGconf,1,

where ΔGconf,1 and ΔGconf,2 are the conformational alignment
terms for 2 variants (indicated by 1 and 2, respectively). For a
more detailed justification of how other physical effects cancel
out in this difference, see ref. 40. This model was built as an
extension of RNAMake, a toolkit for the design of the RNA
3D structure (42), to predict thermodynamics of tertiary struc-
ture formation; thus we call the method RNAMake-ΔΔG.
We generated ΔGconf for all possible sequences of the 4 ca-

nonical base pairs within the chip-piece helix using RNAMake-
ΔΔG (Methods), and these calculations predicted a substantial

effect of helix sequence on tectoRNA assembly of 2.5 kcal/mol,
corresponding to a 70-fold effect on affinity (SI Appendix, Fig. S3).

Blind Tests of Sequence-Dependent TectoRNA Stability. We next
tested the predictions of RNAMake-ΔΔG in a blind prediction
challenge. We selected 2000 tectoRNA sequences that were
predicted (by author J.D.Y.) to uniformly span the predicted
range of affinity. Two authors (S.K.D. and N.B.) then carried out
high-precision measurements for 1,596 of these sequences (the
remaining sequences were not sufficiently represented in our li-
brary). The tested sequences gave experimental tertiary stabilities
spanning a range of affinity of 2.1 kcal/mol (corresponding to a 40-
fold effect on Kd) between the lowest and the highest affinity
binders, similar to the predicted range of 2.5 kcal/mol (a 70-fold
range in Kd). These data confirmed that sequence-dependent con-
formations of RNA helices can have a substantial effect on tertiary
structure formation.
Strikingly, we observed a high correlation between the observed

and the predicted affinities (R2 = 0.71) with rmsd of 0.34 kcal/mol to
the predicted line of fixed slope = 1 (Fig. 3A). Allowing the slope to
vary gave a slightly better prediction (rmsd = 0.21 kcal/mol; best-fit
slope = 0.54) (Fig. 3A). The accuracy of these blind predictions of
tertiary energetics was better than the scale of thermal fluctuations
(RT = 0.6 kcal/mol). The good agreement between our observed and
the predicted values suggests that this computational model captures
structural differences among helices that, in turn, influence the
thermodynamics of tertiary structure formation.
After our blind predictions, we investigated whether the

magnitude of the proximity threshold used to evaluate base-pair
overlap, the choice of base pair at which to evaluate overlap, and
the choice of starting conformation affected the accuracy of the
model. There is a large range of proximity thresholds that give
similar R2 values, although the slope between our predictions
and the observed values changes slightly (SI Appendix, Fig. S4).
In addition, our predictions are largely independent of the base
pair at which we evaluated overlap as well as the starting con-
formation for simulations (SI Appendix, Fig. S5).
To help visualize the formation of the tectoRNA assembly, we

present in Fig. 3 B and C the modeled conformational ensembles
of 2 tectoRNA variants from the extremes of the range of tec-
toRNA affinity measurements (magenta = −10.2 kcal/mol,
cyan = −12.0 kcal/mol). Fig. 3B shows a subset of the chip-piece
helix trajectories, while Fig. 3C shows the modeled distribution
of the final base pair of the flow and chip-piece helix, projected
on the x-y plane. Both the low- and the high-affinity chip-piece
helices sample a wide range of RNA backbone trajectories in the
unconstrained tectoRNA ensembles with variation in the posi-
tion of the final base pair of more than 7 Å (full width at half
maximum in the x and y directions; Fig. 3C). The median posi-
tion of the final base pair differed by 5.3 Å between the 2 chip-
piece helices with the end of the helix being substantially farther
from the flow piece for the low-affinity variant (Fig. 3C). For
both cases and especially the destabilized case (magenta), our
modeling suggested that the chip piece was bound to the flow
piece only in the subset of conformational states making more
extreme conformational excursions (i.e., compare black and gray
trajectories in Fig. 3B). Further supporting this picture, attempting
to model binding affinity using only a single most populated
structure for each base-pair step produced worse predictions (R2 =
0.42; SI Appendix, Fig. S6 A and B). Finally, our modeling sug-
gested that certain structural differences between helix sequences
had large effects on thermodynamic stability, while others had
minimal effects (SI Appendix, Fig. S6 C and D and the next sec-
tion). By taking the difference between the centroid of the bound
states and the unconstrained states, we determined a spatial
projection of the structural differences most coupled to thermo-
dynamic effects. Differences between helices along this projection
were highly correlated to the observed ΔΔG values (R2 = 0.71),
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while differences along a perpendicular axis were uncorrelated (SI
Appendix, Fig. S6D). Thus, specific differences between static struc-
tures may be used to predict and understand thermodynamic effects,
albeit less directly than with the full computational model.

Base-Pair Elements Adopt Distinct Structures at Different Positions.
To gain insight into the how primary sequence affects binding
probability in this system, we determined the average effect on
tectoRNA affinity (ΔΔG) of having any given base pair at each
position within the helix, compared with the average affinity of
all 1,594 tested variants (Fig. 3D and SI Appendix, Fig. S7). These
effects were highly correlated between the observed and the
predicted values (R2 = 0.93; SI Appendix, Fig. S7A and Fig. 3D).
Each base pair has either stabilizing or destabilizing effects

depending on its position within the helix (Fig. 3D). Base pairs
with a purine residue on the 5′ side of the helix (i.e., A-U and
G-C base pairs) were destabilizing when placed closer to the
receptor (positions 1–3) but stabilizing when placed closer to the
loop (positions 6–8), while the reverse was true for base pairs
with a purine on the 3′ side of the helix (i.e., U-A and C-G base
pairs; Fig. 3D). This observed position dependence of sequence
preference strongly contrasts with the “nearest-neighbor rules”
governing secondary structure energetics in which each base-pair
step contributes an additive free energy term toward the overall
free energy of folding, regardless of its position within a helix
(43). This observation also suggests that partial unfolding of the
secondary structure is not responsible for the differences in
tectoRNA assembly formation (see also SI Appendix, Fig. S8).
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smoothing of ∼1,000 bound or partially bound structures sampled from the simulation. The centroids of the distributions are shown as open circles; the black
lines connect the centroid of the partially bound structures to the centroid of the bound structures (black dot). (D) Observed (Left) and predicted (Right)
affinities for chip-piece helices with the indicated base pair at each position within the helix. Affinities are given as the deviation from the median observed or
predicted affinity across all 1,536 variants.

Yesselman et al. PNAS Latest Articles | 5 of 9

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901530116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901530116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901530116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901530116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901530116/-/DCSupplemental


The overall trend in position dependence suggests a simpli-
fying rule that conformational preferences of purine pyrimidine
base pairs are similar but are distinct from pyrimidine purine
base pairs. However, an exception to this rule is evident at po-
sition 9 where A-U and U-A were both destabilizing. This base
pair is adjacent to the closing base pair of the loop, leading us to
consider whether this base pair adopted substantially different
conformations in the bound tectoRNA due to the proximity of
the tertiary contact. However, the observed effect was highly
correlated with the effect predicted by the RNAMake-ΔΔG
model (Fig. 3 D, position 9 row). Therefore, even at this loop-
proximal base-pair step, our data can be understood without
invoking any physical effects beyond the intrinsic base-pair step
conformational preferences used in RNAMake-ΔΔG.
To achieve a more granular understanding of the position-

dependent structural preferences of base-pair steps, we quanti-
fied the contribution of each of the base-pair step’s conforma-
tional states in the bound tectoRNA. States with an increased
representation (over and above the expected sampling frequency
from the Monte Carlo simulation) in the bound tectoRNA
should correspond to the states that promote binding and vice
versa for those with a decrease in representation (SI Appendix,
Fig. S9). We observed disproportionate representation of certain
states within each base-pair step’s ensemble in the bound tec-
toRNA (illustrated for the AU/AU ensemble in Fig. 4A and for
all base pairs in SI Appendix, Fig. S10). Notably, these changes
were highly position dependent such that the majority of states
could be over-represented or under-represented, depending on
their position within the chip-piece helix (Fig. 4A). To illustrate
further, conformational states of the AU/AU ensemble were
clustered based on their position-dependent representation
(shown in a dendrogram and colors in Fig. 4A). Conformational
states in different clusters were each associated with distinct

structural behaviors with small but consistent structural differ-
ences between structures in different clusters (>1-Å differences;
Fig. 4 B and C). For example, conformers in class 6, which
promote binding in positions 1–3 in the helix, are more twisted
and thus span less translational distance than conformers in class
1, which promote binding only in the very first or last base pair in
the helix (Fig. 4 B and C). These results would predict that the
same base-pair element adopts different conformations in the
bound state depending on its location within the helix, thereby
accounting for the differential base-pair preferences along the
helix (Fig. 3D). These different conformational preferences
further underscore the necessity of an ensemble to account for
thermodynamic effects in RNA tertiary structure formation.

Testing RNAMake-ΔΔG at More Extreme Helical Distortions.We next
explored RNAMake-ΔΔG’s capacity to predict the thermody-
namic effects of helix length changes by adding or deleting base
pairs on both the flow and the chip RNAs. We generated chip
RNAs with helix lengths of 8–12 bp (n = 32–96 sequence variants
per length) and tested each chip RNA against flow RNAs with
helix lengths of 9–11 bp, yielding 15 length-pair combinations
(Fig. 5A). For each of these complexes, we calculated ΔΔG
values relative to the original assemblies with 10-bp flow and 10-
bp chip helices, which we abbreviate as “10/10 bp.” Certain
highly mismatched length combinations were so destabilizing
that no binding was detectable (ΔΔG > 4.4 kcal/mol relative to
10/10 bp; 8 length-pair combinations; SI Appendix, Fig. S11). The
remaining length-pair combinations had effects spanning this
4.4 kcal/mol range. The thermodynamic stability of each length-
pair complex with observable binding was calculated with
RNAMake-ΔΔG. Comparisons to measurements demonstrated
a correlation of R2 = 0.66 and rmsd = 0.72 kcal/mol for these
predictions, with the best-fit line having a slope indistinguishable
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Fig. 4. Base-pair conformations differ by position within the helix. (A) Change in sampling frequency of conformational states in the AU/AU ensemble in the
bound versus the partially bound. (B) Example structures of base-pair step conformations that are enriched and depleted at 2 positions. (C) Change in po-
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from 1 (Fig. 5A). The larger rmsd compared with the 10/10-bp
sequence predictions appears due to systematic deviations be-
tween the observed and the predicted effects for specific length
pairs. For example, the 10/11-bp flow/chip complexes uniformly
bound more weakly than predicted, while the 9/9-bp flow/chip
complexes were bound slightly tighter than predicted.
One possible explanation for predicting stronger binding than

is observed is an overly accommodating proximity threshold for
determining bound tectoRNA structures during prediction. Such
a loose threshold would allow unrealistic structures to be con-
sidered bound during the RNAMake-ΔΔG simulation. To assess
this possibility, we analyzed the distribution of bound tectoRNA
conformations in the 6 values describing the overlap in our
proximity threshold [the difference in position (x,y,z) and alignment
Euler angles (α,β,γ)]. There was a striking difference in the distri-
butions in bound tectoRNA of a 10/11-bp flow/chip complex
compared with other topologies with respect to the twist Euler
angle γ: conformations with γ < −10 were significantly enriched
(Fig. 5B and SI Appendix, Fig. S12). We hypothesized that these
states were binding incompetent, leading to the discrepancy be-
tween observed and predicted values for these length-pair com-
plexes. To avoid classifying these states as bound, we tested a more
stringent cutoff by implementing an additional criteria that the helix
within the bound complex cannot be substantially undertwisted
(Euler angle γ > −10°; see Fig. 5 B and C). With this additional

constraint, the agreement between our calculated and the ob-
served ΔΔG for all length pairs improved significantly (R2 = 0.71;
rmsd = 0.65 kcal/mol; Fig. 5D). Additionally, we applied this
cutoff to the sequence-dependent set and observed no significant
difference in predictions (SI Appendix, Fig. S13).
To test this refined proximity threshold, we carried out a

second blind prediction challenge with calculations and experi-
ments carried out independently by authors J.D.Y. and S.K.D.,
respectively. The affinity of additional 300 chip variants of 3 dif-
ferent lengths (9, 10, and 11 bp) were measured against a distinct
10-bp flow piece. These tectoRNA variants represented a wider
diversity of sequences than those used to refine the proximity cri-
terion. The blind predictions using the additional constraint dem-
onstrated a significantly improved relationship between the observed
and the predicted binding affinities, although it did not completely
account for the destabilizing effect of this length-pair complex (rmse,
original model = 1.08 kcal/mol; rmse updated model = 0.77 kcal/mol;
Fig. 5E). The development of this additional constraint on the
bound conformation suggests the utility of an iterative protocol for
refining the anisotropic binding landscape of a tertiary contact.

Discussion
A major goal in understanding the many fundamental biological
complexes containing RNA has been to develop a model for
predicting RNA structure and energetics from a primary sequence.
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We have presented here extensive experimental and computa-
tional evidence for a factor that has largely been neglected in
these studies: RNA double helix conformational preferences that
depend on helix sequence can impact RNA tertiary structure
energetics. RNAMake-ΔΔG gives quantitative estimates for how
helix sequence and length can change the favorability of bringing
together segments that make RNA–RNA tertiary contacts and
makes thousands of testable predictions for the tectoRNA hetero-
dimer model system for tertiary assembly. High-throughput mea-
surements with RNA-MaP allowed rigorous blind tests of this
model and confirmed its predictions with accuracies of 0.34 and
0.77 kcal/mol for effects of sequence and length changes, respec-
tively. These RNAMake-ΔΔG accuracies are somewhat better
than those achieved in post hoc modeling efforts for protein-DNA
indirect readout (0.9 kcal/mol, ref. 26) and are similar to those
achieved in recent blind prediction of nearest-neighbor parameters
for the RNA secondary structure (44, 45).
The conformational ensembles arising from RNAMake-ΔΔG

modeling gives a detailed physical description of how RNA he-
lices "look" inside tertiary assemblies. For example, the same

base-pair sequence is predicted to have different physical struc-
tures when embedded at different positions in the tertiary as-
sembly, and this phenomenon explains the qualitatively different
sequence preferences at each position, observed in both com-
putation and experiment (Fig. 3). The model gives a view of such
structural effects as spread throughout the helix and not focused
at 1 particular “kink” within the helix, providing support that
small deviations can accumulate to cause larger energetic effects.
Importantly, this view implies that most current schemes to model
the RNA tertiary structure through optimization of local pairwise
interactions will be unable to model such long-range cumulative
effects without including a new term analogous to the RNAMake-
ΔΔG calculations herein. It will be important to expand the
RNAMake model to include conformational ensembles for RNA
structural elements beyond helices; preliminary work on G•U
wobble pairs and other "mismatches" suggests that such modeling
will be feasible (SI Appendix, Table S2).
We anticipate that our computational framework will be

useful for understanding the energetic costs and sequence pref-
erences associated with RNA double helix distortions that occur
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Fig. 6. Prediction of RNA double helix distortions that occur during ribosomal A-site accommodation and amino acid charging. (A) When complexed with EF-
Tu and being loaded into the A-site of the ribosome (the A/T state), Thermus thermophilus tRNAThr appears bent (cyan, PDB: 4V5G) compared with Escheria
coli tRNAPhe only complexed with EF-Tu (red, PDB: 1OB2); (B) Overlay of the target fully A/T-bound configuration of the anticodon helix (cyan) and example
RNAMake-modeled configuration (gray); Inset shows how scoring occurs between the target base pair from the bound tRNA and the last base pair in the
RNAMake built model. (C) The secondary structure of tRNA and the location of the anticodon helix and acceptor helix (boxed). (D) Predicted dependence of
A/T-tRNAThr binding free energy on the sequence of the anticodon helix with the indicated base pair at each position within the helix. Additional heat maps
from independently solved structures give indistinguishable sequence dependences (SI Appendix, Fig. S14). RNAMake-calculations were performed over all 45

anticodon helix sequences (Dataset S4). Rigorous tests of the RNAMake predictions will require high-precision presteady-state or single molecule mea-
surements that isolate the binding equilibrium of EF-Tu-bound tRNA into the A/T state. (E) tRNAasp from either E. coli (cyan, 1C0A) or yeast (green, 1IL2) form
similar conformations when bound to E. coli aspartyl-tRNA synthetase (AspRS). This conformation is bent at the acceptor helix compared with a structure of a
partially bound yeast tRNAasp that does not make contact to the synthetase at its acceptor end and was cocrystallized with the bound conformation (red,
1IL2). (F) Overlay of the target fully bound configuration (green) and example RNAMake-modeled configuration (gray); the inset shows how scoring occurs
between the target base pair from the bound tRNA and the last base pair in the RNAMake built model. (G–I) Predicted dependence of tRNA-AspRS binding
free energy on the acceptor stem sequence with the indicated base pair at each position within the helix. RNAMake calculations were performed over all 47

acceptor helix sequences (Dataset S3). While the predicted effects are small in magnitude, calculations with target-bound conformations drawn from (G) E.
coli tRNA/E. coli AspRS (1C0A) and (H) yeast tRNA/E. coli AspRS (1IL2) give similar predicted preferences with slight differences arising from the slightly
different sequences and AspRS-bound structures taken by the 2 tRNAs in nucleotides outside the acceptor stem. The sequence preference map for (F) binding
of yeast tRNAasp to the yeast aspartyl-tRNA synthetase (1ASZ) is quite distinct. Reference binding free energies for ΔΔG are based on RNAMake calculations
with the E. coli tRNAasp sequence (G and H) and the yeast tRNAasp sequence (I). Note that the scale of effects (0.2 kcal/mol or less) is smaller than the dif-
ferences in enzymatic rates (1 to 2 kcal/mol) for the few tRNA combinations reported in refs. 29 and 47, suggesting that effects beyond conformational
bending account for those results, such as the differences in chemical modification or processing in tRNAs prepared in vivo. Rigorous tests of the RNAMake
predictions will require high-precision thermodynamic measurements using in vitro prepared tRNA substrates.

8 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1901530116 Yesselman et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901530116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901530116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901530116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901530116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1901530116


throughout RNA biological processes, such as the amino acid
charging and multistage ribosomal readout of tRNAs (27, 29,
46). However, the effects of changing any single helix base pair
on the energetics of RNA structure or complex formation may
be <1 kcal/mol, and so qualitative, low-throughput measure-
ments will not be sufficient for understanding the energetics of
such distortions. Indeed, in our own paper, it has been critical to
make predictions and measurements across thousands of se-
quences to convincingly demonstrate our model of helix con-
formational preferences as well as its quantitative limits.
To aid future studies, we have made extensive predictions for

2 RNA systems in which "indirect readout" effects have been
previously hypothesized (29, 46): anticodon helix sequence ef-
fects on aminoacyl-tRNA•EF-Tu accommodation during ribo-
some codon recognition (Fig. 6 A–D and SI Appendix, Fig. S14)
and acceptor helix sequence effects on tRNAAsp aminoacylation
(Fig. 6 E–I). We look forward to upcoming advances in RNA-
MaP and other high-throughput biophysical methods that will

enable stringent tests of these quantitative predictions for fun-
damental events in RNA molecular biology.

Methods
Detailed methods for the design, preparation, and experimental measure-
ments of binding affinities for the tectoRNA library as well as the simulation
protocol of RNAMake-ΔΔG (including basic equations, simulation parame-
ters, and scoring function) are presented in the SI Appendix.
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