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Supplementary Box 1: Experimental techniques used to determine various aspects of 
dynamic RNA ensembles.  
 
Experimentally-informed RNA ensembles are crucial to understanding RNA function.  Although 

the RNA ensemble contains millions of conformations, it is often possible to gain insights into 

biological function by visualizing a subset of conformers within local energetic minima along the 

free-energy landscape. The ability to model thermodynamic quantities such as the binding 

affinity between an RNA and partner molecule crucially depends on the quality of the ensemble 

in terms of how well related conformations can be resolved and assigned a specific population. 

The quality and information content of experimental data used in the ensemble determination 

will dictate the quality of the ensemble and what information it will provide. Here, we review 

experimental techniques that have been applied to generate RNA ensembles. Each technical 

approach provides unique types of structural information that report on dynamics at specific 

timescales. We discuss the pros and cons of each technique and provide examples of how the 

techniques have been applied to generate RNA ensembles. All the discussed techniques report 

on equilibrium dynamics; non-equilibrium time-resolved techniques that also provide information 

regarding RNA ensembles and free energy landscapes are not described here. 

 
1. Chemical probing: 
How it works: A chemical probe is used to chemically modify nucleotides in a structure-specific 

manner. Two major classes of chemical probes are typically used: (1) DMS, which attacks the 

base pairing face with reaction rates dependent on solvent exposure and hence single-stranded 

population; (2) SHAPE like reagents, which attack the 2’OH and thus depend on sugar flexibility 

(sugar pucker), which is again proportional to single-strandedness. Sites of chemical 

modification are detected by reverse transcription, either as a stop at the modification site or an 

insertion, deletion or point mutation in the cDNA. Sequencing can be used to locate where the 

RNA was modified, allowing calculation of the reactivity of each nucleotide.  Typically, this data 

is fit to a single conformation, which can lead to biased results for dynamic RNAs. However, 

computational methods have been developed to fit structure-probing data to an ensemble of 

secondary structures rather than a single conformation1,2. 

Information provided: Chemical probing measures the reactivity of each nucleotide, which in 

turn depends on the extent of base pairing. The reactivity is an ensemble-weighted average 

over all structures of the RNA. Note that there are some caveats here — for SHAPE reagents, 

certain sugar puckers lead to very high reactivities. Such nucleotides are single-stranded, but 
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chemical reactivity per se is not purely related to base pairing in this case. Likewise for DMS, in 

certain structural contexts, the reaction rate seems to be almost catalyzed relative to pure single 

stranded nucleotides. 

Timescale sensitivity: Fastest chemical probing has averaging timescale of 2-3 seconds 

(Benzyl cyanide). For the common 1M7 SHAPE reagent, averaging occurs on ~1 min timescale 

(Tier 0).  

Pros: Data can be collected in vivo and at transcriptome-wide scales. Compared to other 

methods, it requires small amounts of sample (endogenous expression levels are frequently 

suitable). 

Cons: Structure is never directly observed, rather inferred based on consistency with chemical 

reactivity profile. Thus, inferred models can be inaccurate or biased by computational 

algorithms. Provides limited information regarding 3D structure. 

Example application: Computational methods, including structure landscape explorer and 

quantifier (SLEQ)2 and Rsample1 have been developed to fit structure-probing data to an 

ensemble of secondary structures rather than a single conformation. These methods were able 

to recover the structural heterogeneity of RNAs known to have multiple structures, including 

riboswitches. 

 
2. Cryogenic electron microscopy (cryo-EM) 
How it works: Electrons are accelerated through a specimen cooled at cryogenic temperatures 

and the scattered electrons are focused by the electromagnetic lenses of the 

microscope.  Computational algorithms are used to separate small conformational changes in 

single molecule images using single particle analysis or sub-tomogram averaging 

techniques.  Cryo-electron tomography, single-particle cryo-electron microscopy, and electron 

crystallography are different modalities of cryo-EM.   

Information provided: Low energy conformations in the ensemble distribution are captured as 

snapshots of different conformational classes under solution conditions prior to flash freezing. 

Timescale sensitivity: NA 
Pros: Cryo-EM requires smaller amounts of sample relative to NMR and can be applied to large 

RNP complexes, virus particles, cells and tissue sections. The maximum observable object size 

is essentially only limited by the specimen thickness that can be penetrated with the electron 

beam. 
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Cons: Does not provide kinetic information regarding the rates of interconversion between 

different snapshots.  Also, there is a lower molecular weight cutoff ~ 40 kDa and therefore few 

applications to non-coding RNAs that are not part of ribonucleoprotein complexes. 

Example application: Ensemble analysis unveiled conformational states of the ribosome 

during translation that play essential roles in the decoding mechanisms3  
 
3. Electron paramagnetic resonance (EPR) 
How it works: EPR monitors transitions between the energy levels of unpaired electron spin(s). 

When coupled with site-directed spin labeling, in which spin labels containing stable unpaired 

electron(s) (most commonly a nitroxide) are attached at specific sites of the target molecule, 

EPR provides information such as rotational motions of a label (derived using continuous-wave 

EPR (cw-EPR)) and distances between pairs of labels (5 to 20 Å with cw-EPR or 20 to ∼ 100 Å 

with pulsed EPR techniques). 

Information provided: Conformations of parent macromolecule(s) from EPR measured inter-

label distance distributions and/or pattern of individual label behaviors (e.g., nitroxide rotational 

dynamics), as well as site-specific dynamics information from label rotational motions and 

relaxation behaviors. 

Timescale sensitivity: From nanoseconds to seconds (Tiers 0-2). Provides rate information 

and in some cases the order of conformational transitions. 

Pros: Can be applied to high-molecular weight complexes in solution under physiological 

conditions using a small amount of samples.  Distances can be measured from a pair of 

chemically identical spin labels, and a number of spin labels (e.g., nitroxides) are smaller and 

potentially less perturbing than most fluorophores. Measurements have been demonstrated in 

vivo.  

Cons: Macromolecular information extracted from EPR measurement is influenced by the 

orientation and dynamics of spin labels with respect to the parent molecule, and various 

degrees of approximations often have to be made in data analyses and interpretation. 

Example application: Investigation of nucleic acid-dependent conformational changes in 

CRISPR-Cas94. 

 
4. Mutate-and-Map: 
How it works: In mutate-and-map experiments, every nucleotide of the RNA of interest is 

mutated and its effect on the rest of the RNA is determined with chemical probing (Reviewed in 
5). Most mutations only cause a local effect on reactivity that can be used to determine the 
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pairing partner of that nucleotide.  However, some mutations lead to large-scale reactivity 

differences that are proposed to reveal alternative secondary structures of the RNA. When 

integrated with computer modeling, these methods can provide an ensemble of secondary 

structures. REEFIT (RNA ensemble extraction from footprinting insights technique) was the first 

method developed for this purpose6. In mutate-map-rescue, discovery of additional 

compensatory mutations that rescue the effects of each originally perturbing single mutation 

provide tests of each base pair, including those present at low frequencies in alternative helices. 

In lock-mutate-map-rescue, a four-dimensional chemical mapping method, each candidate helix 

is locked through designed mutations and the rise or depletion of the base pairs of other helices 

are assayed by compensatory mutagenesis, allowing for a detailed dissection of allostery in 

highly complex secondary structure ensembles7. Going beyond secondary structure, MOHCA-

seq (Multiplexed •OH Cleavage Analysis with paired-end sequencing) incorporates hydroxyl 

radical sources to the RNA and reads out cleavage from these radical at other positions, giving 

a map of nucleotide-nucleotide proximities at nanometer resolution; the method is sensitive to 

transient tertiary contacts even in RNA states that form heterogeneous tertiary ensembles8.  

Information provided: Chemical probing data for alternative structures accessed by single 

point mutations that map to an alternative secondary structure; validated helices and allosteric 

correlations between helices, from the multiple mutation approaches; and tertiary contacts in 

heterogenous ensembles from MOHCA-seq. 

Timescale sensitivity: (see ‘Chemical Probing’). 

Pros: Compensatory rescue enables independent validation of the “alternative structures”.  

Cons: No kinetic information.  

Example application: A mutate-map-rescue approach uncovered a 20% populated alternative 

conformation of 16S rRNA accessible by a single nucleotide register shift9. This conformation 

agreed with crystallographic structures, suggesting that differences in conditions redistribute the 

population distribution of this RNA ensemble9.  

 
5. Nuclear magnetic resonance (NMR)  
General Pros: Can be performed under a variety of solution conditions. Ultra high spatial-

temporal resolution to local and global dynamics spanning twelve orders of magnitude in time; 

uniquely capable of visualizing low abundance conformational states. 

General Cons: Typically limited to RNAs <70 nucleotides with applications becoming 

significantly more challenging for larger RNA. Resonance assignments and data collection and 

analysis can be time-consuming. 
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Chemical Shifts 
How it works: The NMR chemical shift measured for individual 1H, 13C, 15N, and 31P nuclei 

depend on the local electronic distribution which in turn depends on local aspects of the 

structure.  

Information provided: The chemical shifts are exquisitely sensitive to bond lengths, bond 

angles, dihedral angles, hydrogen bonding, protonation and tautomeric states as well as ring 

current effects arising due to circulation of π-electrons in the aromatic nucleobases, magnetic 

anisotropy, and other electrostatic effects. For a dynamic ensemble, the chemical shifts will 

correspond to a population weighted average over all conformations provided that the rates of 

interconversion between conformers is larger than the corresponding differences in chemical 

shifts.  

Timescale sensitivity: Motionally averaged over timescales faster than milliseconds (tier 1 and 

2). Also sensitive to slow tier 0 dynamics which results in the appearance of distinct resonances 

for the different conformational states.  
Pros: Exquisitely sensitive to local electronic structure including ionization and tautomerization 

broadly across the base sugar and backbone. One of the easiest parameters to measured by 

solution NMR. Powerful approach to compare ensembles and assess ensemble redistribution.  
Cons: Insensitive to global structure. The accuracy with which chemical shift data can be 

computed from 3D structure remains sub-optimal for determining ensembles, but can be used to 

test ensembles determined using other methods. 

Example applications: Used to cross-validate and test ensembles of the HIV-1 TAR10. 

 
Residual dipolar couplings (RDCs) 
How it works: Partial alignment (1 in 103-105 molecules are aligned) of RNA molecules in 

ordering media (typically filamentous bacteriophage11,12) results in incomplete averaging of 

dipolar couplings which manifests as splitting of resonances. The resulting residual dipolar 

coupling (RDC) depends on the cube of the distance separating the two nuclei, which is the 

bond length for directly bonded spins, as well as on the angle between the bond vector and 

molecule-fixed alignment tensor frame describing overall alignment of the RNA.  
Information provided: Reports ensemble averaged trigonometric functions of the angle 

between bond vectors (typically directed bonded C-H and N-H vectors) and a molecule-fixed 

alignment tensor frame describing overall alignment of the molecule average over <millisecond 

timescales.  
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Timescale sensitivity: Motionally averaged over dynamics occurring <milliseconds. Sensitive 

to Tier 1 and 2 dynamics but not Tier 0. 
Pros: Exquisitely sensitive to global and local aspects of ensembles. Broad sensitivity to 

timescales < milliseconds. Limited timescale sensitivity simplifies ensemble determination. 

RDCs can be accurately predicted for a given conformation based on its 3D structure.  

Cons: Limited distance sensitivity. Does not provide timescale information.  

Example application: Ensemble of apo- TAR RNA reveals conformations similar to those 

observed in seven distinct ligand bound states10. 

 
Relaxation dispersion and ZZ-exchange 
How it works: Stochastic conformational transitions at the micro-to-second timescale result in 

dephasing of NMR magnetization (relaxation dispersion) or cross-peaks in 2D spectra (ZZ-

exchange) in a manner dependent on the population and kinetic rates of the transition as well as 

on the chemical shift signatures of the different conformation sampled.  

Information provided: The population and kinetic rate constants for conformational transitions 

involving more than two states as well as chemical shift signatures that report on the 3D 

structure of the states.  

Timescale sensitivity: Depends on differences in chemical shifts and signal to noise but 

generally sensitive to motions occurring on the micro-to-second timescale.  

Pros: Can be used to detect exceptionally low populated (populations as low as 0.01%) short-

lived (lifetimes as low as a few microseconds) conformational states in RNA ensembles. 

Provides comprehensive kinetic, thermodynamic, and structural information at atomic resolution. 

Can be used to characterize complex kinetic networks and topologies.  

Cons: Can be particularly time-consuming to collect and analyze data. Determining structure of 

the low-abundance state not always straightforward.  

Example application: Studies of the fluoride riboswitch uncover a low-abundance short-lived 

transient state that exposes the RNA for strand invasion during co-transcriptional folding thus 

directing folding toward the OFF state. 

 
Exact nuclear Overhauser effects (NOEs) 
How it works: Quantitative measurements of buildup-derived NOEs across different short 

mixing times allows determination of accurate ensemble-averaged inter-proton distances. A 

sufficiently dense network of these distances allows determination of an ensemble of 

structures13. 
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Information provided: Time-averaged inter-proton distances averaged over several 

milliseconds. The information content is complementary to angular restraints obtained from 

residual dipolar couplings and scalar couplings. 

Timescale sensitivity: Less than several milliseconds (depends on the longest mixing time, 

typically ~200 ms). 

Pros: Can be applied without any modifications to the sample and to unlabeled samples for 

small < 20 nucleotides. Yields rich density of data (several 10s per nucleotide). 

Cons: Deviations from isotropic diffusion can complicate data analysis. Correction of spin 

diffusion is highly dependent on initial model. Distance averaging can be different depending on 

timescale of motion; therefore, timescale information needed to rigorously interpret data. 

Restricted to RNA size amenable to NMR spectroscopy. 

Example applications: Used to determine a two-state ensemble for a 14-mer UUCG 

tetraloop14. 

 
6. RNA-MaP: 
How it works: Leverages Illumina sequencing to allow massively parallel and quantitative 

measurements of the formation of >106 model RNA heterodimers referred to as ‘tectoRNA’15. 

The tectoRNA ‘host-guest’ system is a heterodimer composed of two RNAs with two 

intermolecular tetraloop–tetraloop-receptor (TL–TLR) tertiary contacts and non-contacting RNA 

elements, both of which can be varied (see Fig 4b). RNA-MaP provides direct fluorescence-

based binding curves and multiple replicates per chip gives high precision and rigorous 

statistics. As the same tertiary elements are present when various RNA elements such as 

helices and junctions are used, any difference in binding is a consequence of the ensemble 

properties of the inserted elements. Conversely, when exploring properties of tertiary elements, 

connecting helices and junctions are held constant. 

Information provided: The likelihood of forming the tectoRNA assembly reflects the inherent 

ensemble properties of its constituent RNA elements (helices, junctions, and tertiary contacts) 

that compose the assembly. RNA-MaP therefore provides binding ‘thermodynamic fingerprints’ 

that can be used to compare and constrain models for the conformational ensembles of 

embedded elements.  

Timescale sensitivity: Provides data on kinetics of binding which in principle also carry 

information regarding ensemble kinetics.  
Pros: >106 measurements can routinely be carried out from a single sequencing chip on a time 

scale of <1 week. Can be used to obtain millions of thermodynamic measurements and 
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quantitative ‘thermodynamic fingerprints’ for a vast number of RNA helix, junction, and tertiary 

contact elements.  

Cons: Deconvoluting ensemble properties from junctions and tertiary contacts may not always 

be straightforward. The tecto host-guest system is limited to specific RNA motifs and probes 

strained conformations; new host-guest systems are currently under development. Translating 

thermodynamic finerprints into ensembles requires a model for assembly energetics.  

Example applications: Binding data has been used to obtain thermodynamic fingerprints for 

thousands of two-way HJH motifs and A-form helices15. This study exposed sequence-

dependent ∆G0
redist penalties involving redistribution of the A-form helix ensemble that can 

impact the energetics of RNA tertiary assembly1 

 
7. Small angle X-ray scattering (SAXS)-based approaches 
General Pros: Can be performed under a variety of solution conditions.  

General Cons: Limited resolution for local changes in the ensemble. Does not provide kinetic 

information regarding the rates of interconversion.  

 
SAXS 
How it works: Elastic scattering of X-rays is measured at very low angles (typically 0.1º-10º), 

providing information about the overall shape and size of biomolecules that are 5 nm to 25 nm 

in size.  

Information provided: Population-weighted distribution of distances for all atom-pairs within 

the biomolecule.  

Timescale sensitivity: NA 
Pros: Electron rich phosphate groups provide favorable contrast in nucleic acid applications. 

Cons: Need to avoid aggregation. Calculations can be computationally expensive, and 

approximations are often introduced in order to accelerate the calculations. 

Example application: Systematic studies of different riboswitches reveals diverse degrees of 

ensemble redistribution following ligand binding16. 

 
Au-SAXS 
How it works: Provides precise distance distributions for gold nanocrystals that are attached at 

specific positions on the nucleic acid17. The scattering profile between two attached gold 

nanocrystals is isolated from the intra-nanocrystal, intra-nucleic acid, and nucleic acid-

nanocrystal interference pattern by subtracting the scattering profile measured for isolated gold 
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nanocrystals, isolated nucleic acid, and singly-labeled nucleic acid from the scattering profile 

measured for the double-labeled nucleic acid.  

Information provided: Distance distributions between gold nano-particles that are attached to 

the RNA.  

Timescale sensitivity: NA 
Pros: Precise determination of distance distribution. Multiple pairwise distance distribution can 

often be measured. Insensitivity to timescales of the motion can simplify determination of the 

thermodynamic ensemble. 

Cons: Motions of the gold nanocrystal relative to the nucleic acid can influence the scattering 

profile and these contributions need to be minimized. Tethering of the linker to RNA itself should 

not affect the intrinsic dynamics. 

Example application: Studies of the k-turn motif reveal ensemble redistribution following 

binding to protein L7Ae18. 

 
8. Single molecule Förster resonance energy transfer (smFRET)  
How it works: FRET relies on measuring the transfer of energy from one donor fluorophore to 

another acceptor fluorophore in a distance dependent manner. FRET is observed when the 

fluorophores are within 2 to 10 nm. Changes in FRET signal can be used to identify dynamic 

transitions as well as calculate relative distances between the fluorophores based on the 

efficiency of the energy transfer.  

Information provided: Distance information between fluorophores that are specifically attached 

to the RNA. Measures transitions within a single molecule and provides information about the 

underlying conformations and their rates of interconversion.  
Timescale sensitivity: Allows access to timescales slower than 100-μs. 
Pros: In bulk studies, the measured signal is averaged over an ensemble of molecules. This 

can make it difficult to deconvolute the kinetics and thermodynamics of multiple elementary 

steps. Single-molecule approaches such as smFRET can overcome these challenges, since the 

signal from individual molecules are analyzed. The approach also bypasses the need to 

synchronize molecules as is done in traditional bulk kinetic studies.  

Cons: Data also depend on the orientation and dynamics of the fluorophores, and 

approximations often have to be made to extract distance information19-21. Need to rule out that 

fluorescent dyes perturb RNA ensemble.  
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Example application: smFRET was used to measure the thermodynamics and kinetics of TL–

TLR tertiary contact formation in the P4-P6 domain of the Tetrahymena group I ribozyme 

providing support for ensemble modularity and the reconstitution model22. 
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Supplementary Box 2: Determining dynamic ensembles of RNA and computing 
the energy cost of re-distribution (ΔG0

redist)  
 

Determining dynamic ensembles of RNA  
 Three general approaches (see the figure) have been used to construct atomic-

resolution ensembles based on various types of methods (Supplementary Box 1). All 

approaches rely on some input from computational modeling or computational force 

fields to fill the ‘data gap’, as many more parameters are needed to specify an ensemble 

than to obtain a single structure. In one approach (see the figure, part 1), experimental 

data guides selection of conformations from a pool that is typically generated using 

computational methods, such as molecular dynamics simulations1. This increases the 

ease of integrating many different types of data, however, the quality of the ensemble is 

strongly dependent on the conformational pool. In a second approach (see the figure, 

part 2), experimental constraints are included as penalty functions or pseudo-energies in 

the conventional force field2,3. The experimental pseudo-potential can bias sampling 

towards conformations that may otherwise be disfavored by the force field. This 

approach is only practical with data that can be efficiently computed during the course of 

the trajectory. A disadvantage is that over-fitting of data can result in artifactual 

conformational deformation. Also, the experimental pseudo-potential can in some cases 

also induce non-physical perturbations to the free energy landscape. Finally, in a third 

approach (see the figure, part 3), the experimental data is used to minimally perturb a 

prior distribution (e.g. obtained from MD simulation) using either maximum entropy or 

Bayesian4 approaches. This approach can use a variety of experimental inputs and 

yields high-resolution descriptions of the ensembles. However, the accuracy of the 

ensembles generated is highly dependent on the quality of the initial conformational 

pool. 

When using all three approaches, it is very important to assess the uncertainty in 

the ensemble, because there are usually many different ensembles that can reproduce 

the experimental observables. Methods used to assess RNA ensembles include cross-

validation by predicting data not used in the ensemble determination1, using synthetic 

data to determine how well experimental data can define specific aspects of an 

ensemble1,5, Monte Carlo based approaches to assess the accuracy and the precision of 

a given model or parameterization1, and Bayesian approaches to assess ensemble 

uncertainty4. 



 
 
 
Computing ΔG0

redist 
 Consider an RNA that transitions from ensemble A (free) to ensemble B (bound) 

upon binding to a partner ligand (L)  

𝐴𝐴 + 𝐿𝐿 ↔ 𝐵𝐵𝐵𝐵 

At equilibrium, the observed free energy of binding 𝛥𝛥𝛥𝛥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜𝑜𝑜
°  is given by 

𝛥𝛥𝛥𝛥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜𝑜𝑜
° = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾𝑑𝑑) = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�

( [𝐵𝐵𝐵𝐵]
[𝐵𝐵𝐵𝐵]0

)

( [𝐴𝐴]
[𝐴𝐴]0

)( [𝐿𝐿]
[𝐿𝐿]0

)
� 

where 𝐾𝐾𝑑𝑑 is the equilibrium constant for the binding process, R is the universal gas 

constant, T is the temperature of the system, and the quantities in the square brackets  

are the concentrations of the molecular species, with the subscript of 0 denoting the 

standard state.  

The net binding reaction can be written as the sum of two constituent reactions involving 

(1) the redistribution of the ensemble A to ensemble B in the absence of L 

𝐴𝐴 ↔ 𝐵𝐵 

(2) the binding of L to ensemble B 

𝐵𝐵 + 𝐿𝐿 ↔ 𝐵𝐵𝐵𝐵 

with the associated free energy changes 𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟°  and 𝛥𝛥𝛥𝛥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐵𝐵
°  respectively. Thus 



𝛥𝛥𝛥𝛥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜𝑜𝑜
° = 𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟° + 𝛥𝛥𝛥𝛥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐵𝐵

°  

𝛥𝛥𝛥𝛥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐵𝐵
°  is driven by enthalpic and entropic contributions to the binding process. To 

determine the free energy term, 𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟° , we can represent the conformational 

probability distribution of ensemble A as pA(x) for and pB(x) for ensemble B. In this 

notation, x is a geometric descriptor of the ensemble conformational space. However, 

we note that this is a simplification since, in principle, ensembles are distributions over 

multi-dimensional phase space (3N, where N is the number of atoms in the system). The 

energetic cost, 𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟° , to re-weight or change the conformational probability distribution 

from pA(x) to pB(x) is given by 𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟° 6 

𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟° = −𝑅𝑅𝑅𝑅∫𝑝𝑝𝐵𝐵(𝑥𝑥)𝑙𝑙𝑙𝑙 �𝑝𝑝𝐴𝐴(𝑥𝑥)
𝑝𝑝𝐵𝐵(𝑥𝑥)�𝑑𝑑𝑑𝑑  

Deriving an expression for 𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟° requires knowledge of the changes in enthalpy and 

entropy accompanying ensemble redistribution. The entropy change for the 

conformational redistribution 𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟°  is given by  

𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟° = −𝑅𝑅�𝑝𝑝𝐵𝐵(𝑥𝑥)𝑙𝑙𝑙𝑙 �𝑝𝑝𝐵𝐵(𝑥𝑥)� − 𝑝𝑝𝐴𝐴(𝑥𝑥) 𝑙𝑙𝑙𝑙 �𝑝𝑝𝐴𝐴(𝑥𝑥)�𝑑𝑑𝑑𝑑 

Assuming that the volume change accompanying a shift in conformational ensemble 

from A to B is negligible, the enthalpy change for the conformational transition 𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟° is 

equal to 𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟°  and is given by  

𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟° = 𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟° = 𝑈𝑈𝐵𝐵° − 𝑈𝑈𝐴𝐴° = �(𝑝𝑝𝐵𝐵(𝑥𝑥) −  𝑝𝑝𝐴𝐴(𝑥𝑥))𝐸𝐸𝐴𝐴(𝑥𝑥)𝑑𝑑𝑑𝑑 

From the definition of the population pA(x), we have  

𝑝𝑝𝐴𝐴(𝑥𝑥) = 𝑒𝑒−(𝐸𝐸𝐴𝐴(𝑥𝑥) 𝑅𝑅𝑅𝑅⁄ ) 𝑍𝑍⁄  

where Z is the partition function. On substituting for EA(x) and solving for 𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟° , we get 

𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟° = 𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟° = −𝑅𝑅𝑅𝑅�(𝑝𝑝𝐵𝐵(𝑥𝑥) −  𝑝𝑝𝐴𝐴(𝑥𝑥))ln (𝑝𝑝𝐴𝐴(𝑥𝑥))𝑑𝑑𝑑𝑑 

Thus,  

𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟°  = 𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟° − 𝑇𝑇𝛥𝛥𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟° = −𝑅𝑅𝑅𝑅∫𝑝𝑝𝐵𝐵(𝑥𝑥)𝑙𝑙𝑙𝑙 �𝑝𝑝𝐴𝐴(𝑥𝑥)
𝑝𝑝𝐵𝐵(𝑥𝑥)�𝑑𝑑𝑑𝑑 

A common misconception is that conformational penalties only come in the form of 

entropy; rather, both entropic and enthalpic contributions are important because the 

penalty will depend on the enthalpic stabilities of newly populated conformers. 
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